ECOLE POLYTECHNIQUE June 30, 2005
Programme International

DONIEC, Marek

RAPPORT DE STAGE D’OPTION SCIENTIFIQUE

A Component Library for the

Stmulation of Chip Multiprocessors

MicroLib: une approche modulaire de la simulation de processeurs

NON CONFIDENTIEL

Option : INFORMATIQUE

Champ de l'option : Architecture des ordinateurs
Directeur de l'option : Monsieur DOWEK, Gilles
Directeur de stage : Monsieur TEMAM, Olivier
Dates du stage : April 11 - Juillet 31

Adresse de 'organisme : INRIA Futurs

Parc Club Orsay Université,
ZAC des vignes

4 rue Jacques Monod - Bat G
91893 Orsay Cedex FRANCE

Abstract

Processor simulation is a key tool used in microprocessor research to evaluate the
performance and usefulness of new ideas. Currently used simulators such as Sim-
pleScalar are monolithic and optimized for superscalar processors. In the meantime
the trend in research and Industry has gone to Chip Multiprocessors (CMP) and
especially researchers want to focus on implementations with hundreds of cores.
Unfortunately, the monolithic simulators fail to provide the needed compatibility
to simulate CMPs. Newer modular solutions provide this compatibility, but they
have not yet been used for in this way. Thus the needed CMP modules are miss-
ing. The main goal of my intership was the development of such a library. I have
researched different existing solutions for CMPs and the Networks on Chip (NoC)
connecting the CMP cores. From this information I have decided which modules
are needed. Afterwards I have implemented and tested those modules. The sec-
ond part of my intership was to investigate solutions for the interfacing of modules
from different simulation environments. This will further help to facilitate module
reuse and simulator construction in general. I have investigated two solutions to
this problem. One I have developed and tested myself. The other I have started
to work on recently and I have had already possitive results. The library I have
developed will help researchers to test their CMP programs and construct a big
number of different topologies. Our hopes are that this library will grow due to
contributions by others a possibly become a standard toolkit for CMP simulation.

Résumé

La simulation des processeurs est la démarche principale utilisée dans la recherche
d’architecture des ordinateurs. Les simulateurs actuellement utilisés, comme Sim-
pleScalar, sont construits d’'une maniére monolithique et optimisés pour la simula-
tion des processeurs superscalaires. Mais la derniére tendance dans la recherche et
lindustrie est d’évoluer vers des multi-processeurs sur chip (chip multiprocessors -
CMP). En particulier, les chercheurs veulent se focaliser sur des implémentations
avec des centaines de noyaux. Cependant les simulateurs monolithiques ne parvi-
ennent pas & offrir la comptabilité nécessaire pour simuler des CMP. Des nouvelles
solutions modulaires offrent cette possibilité mais malheureusement elles n’étaient
pas encore utiliser de cette facon. Donc les modules nécessaires ne sont pas encore
implémentés. Le but général de mon stage était de développer une telle biblio-
théque. J’ai recherché des solutions existantes de CMP et de réseaux sur chip
(network on chip - NoC) qui associent les noyaux des CMP. A partir de cette in-
formation, j’ai choisi les modules qui doivent nécessairement étre réalisés. Ensuite,
j’ai implémenté et testé ces modules. La seconde partie de mon stage & consisté a
explorer les solutions possibles de pour la communication des modules provenant
d’environnements de simulation différents. Cela peut faciliter la réutilisation des
modules et la construction de simulateurs en général. J’ai envisagé deux solutions
pour ce probléme. J’ai déja développé et testé la premiére. J’ai commencé & tra-
vailler sur la deuxiéme et j’ai déja eu des résultats positifs. La bibliothéque que j’ai
développé va aider d’autres chercheurs & tester leurs programmes pour CMP et &
construire une quantité déja considérable de topologies différentes. Nous espérons
que cette bibliothéque va s’agrandir grace & des contribution faites par d’autres
équipes de recherche et peut-étre devenir un outil standard pour la simulation
CMP.

Acknowledgments

First of all I would like to thank the whole Alchemy research group for the
kindness and helpfulness they have offered me. I have really enjoyed my
internship and a big part of this is due to the friendly atmosphere here.

I want to thank Prof. Temam for having let me work with his research
team and bother them with questions. Also I want to thank him for all the
useful comments and advises he gave me regarding this report and for all
the other things he has helped me with.

I want to especially thank Daniel Gracia Pérez, Pierre Palatin, Yves
Lhuillier, and Gilles Mouchard for having answered all my questions so pa-
tiently and for all the usefull comments and remarks they made regarding
all aspects of my work.

Another special thanks goes to Sylvain Girbal and Pierre Palatin for
having shown me all those linux tricks and having so often fixed some kind
of problem with my account.

Orsay, June 29th, time: 31:14!

!There is no mistake here.

Contents

1 Introduction 6
2 The simulation environments 8
2.1 SystemC 10
2.2 MicroLib.o 15
2.3 Liberty. 17
24 SimpleScalar 20

3 Design choices 21
3.1 Existing CMP architectures and interconnects 21
3.1.1 A shared bus solution: Stanford Hydra CMP 21

3.1.2 Packet-switched networks: MIT RAW Microprocessor 23

3.1.3 Aring bus: Cell Processor 25

3.1.4 A crossbar interconnect 27

315 SPIN. 28

3.2 Selecting a Network on Chip for CMP 30
3.3 Selectingacorefor CMP. 31
3.4 Selectingamemoryo oo 32

4 Implementation of the modules 33
4.1 The PowerPC 405 processor module 33
4.1.1 Problems encountered 33

4.1.2 Hardware architecture 34

4.1.3 Instruction Set Architecture 36

414 TImplementation 0. 36

4.1.5 Verification with an emulator 39

4.2 The Network on Chip module 40
4.2.1 Architectureo oo 40

4.2.2 TImplementation L. 41

4.2.3 Possible improvementso oL L 43

4.3 The memory module 43

5 Communication between different simulation environments 44
5.1 A common communication channel, 46
5.1.1 Socket-based communication 46

5.1.2 TImplementation 48

5.1.3 Performance. 49

5.2 An LSS wrapper 49

6 Simulation 52
6.1 A 16 core network on chip simulator, 52
6.2 Simulation using sockets oo 54

Qo

Q @ »

Future work

Personal conclusion
FastSysC

A simple test program

A LFSR implementation in SystemC

Cl xorh e
C2 flipfloph
C3 teeho
Ca4 Isrh

Ch mainepp. . . .« o oo

A LFSR implementation in LSE
D.1 xor_gatelss
D2 Isrlss o e

55

57

58

60

61
61
61
62
62
63

1 Introduction

The simulation of processor architectures is the core tool used by micro-
architecture researchers for the purpose of evaluating the performance and
usefulness of new ideas [6]. Most research papers on computer architecture
include performance measurements that have been determined by simulation
[5]. These simulations range from bit-accurate simulations on the gate level
to functional simulations for testing program behavior for example.

The most commonly used simulation tool for this purpose is SimpleScalar
[14]. More than 50% of the articles published on computer architecture
use it to test their research ideas [39, 45]. SimpleScalar is a tool suit that
contains multiple simulation source codes that can be adapted by researchers
to suit their needs. It has been developed for the simulation of superscalar
processors and is preferably used for out-of-order processor architectures.
Research on this type of processors has been highly fruitful. As technology
allowed us to fit more and more transistors on a single silicon chip and clock
them at higher frequencies the superscalar processors consumed the resources
given producing in turn bigger pipelines and wider instruction windows that
allowed for ever faster execution and data throughput. Throughout this time
SimpleScalar has served as an irreplaceable tool to the developers.

But the situation is currently changing. While today’s technology allows
us to fit more than a billion transistors on a single silicon chip the huge
processors cannot cope anymore with the increasing frequencies due to signal
runtimes on the chip. In today’s modern processors an electric pulse that
runs across the die needs multiple clock-cycles to actually cross it [28]. This
effect worsens as frequency increases. Intel has officially announced that
it has problems reaching the 4.0 GHz frequency with its processors. And
although the new Cell Processor is going to be able to run at 4.6 GHz
[26] a current trend towards another solution can be observed. Developers
are stopping to increasing the frequency and utilize the transistor budget
for area expensive predictions units to accommodate for worsening pipeline
effects. Instead the industry has started to invest transistor resources into
multiple processor cores on a single chip. Already Intel has produced a dual
core Itanium 2 processor with 1.7 billion transistors [24, 25, 21]. IBM also
has a dual core processor on his range of products: The Power4 [41]. This
new evolution has even led to stripping down the processor cores in order
to be able to place more of them on a single die. As an example an eight
in-order core solution in the form of the Cell Processor [44, 26| is on its
way to the global market. And processor dies with as many as 16 in-order
cores have already been implemented by researchers as in the case of the
MIT Raw Microprocessor [9]. These new types of processors are called chip
multiprocessors (CMP).

Unfortunately SimpleScalar fails to provide adequate service for this new
research branch. At the time SimpleScalar was designed the world focused

on superscalar processors and multiprocessors were not on debate. Thus the
simulator lacks the ability for CMP simulation. A strong handicap that ac-
tually prevents SimpleScalar from effectively evolving in this way is the fact
that it is based on a monolithic design. The whole simulator is encapsulated
as one big program code and thus changes are hard to make. New simulation
environments such as SystemC [1] and Liberty [13] have brought a promising
solution to the problem. They are based on modules and thus offer a far big-
ger flexibility than SimpleScalar. Sadly these environments have so far not
been used to provide appropriate CMP simulation support. Instead most
module libraries published for these environments focus mainly on compo-
nents needed for the simulation of superscalar processors. An example is
MicroLib [5] that contains models like that of the PowerPC 750 processor
[15] or a general superscalar processor module called OoOSysC [22]. These
modules can be well branched together to form a multiprocessor simulator
with a few cores. But they do not resemble the current research trend to use
simpler cores in order to be able to have hundreds of them on a single chip.

These issues motivated the development of a new library specially de-
signed for chip multiprocessor simulation. The first goal was to identify the
components that would best fit in such a library. This included selecting
currently used architectures and the correct granularity of the modules. Af-
terwards the chosen modules needed to be implemented. Major terms to be
fulfilled were a very strong flexibility of the modules and the possibility for
expansion. This will allow for better reuse by other research groups. An-
other very important objective was decent simulation speed of the modules.
Reasearch always focuses on future products. Since there already are CMPs
with a few cores on the market this means that researchers should start in-
vestigating architectures with hundreds of cores and more. Thus every waste
of simulation time in a module will be multiplied by the number of hundreds
of instantiations of this module. In order to receive significant results for
a simulation researchers need to at least simulate a million instructions. If
the modules proposed will not result in fast simulators they are of limited
usability.

A second goal of this project addressed a related issue. As already men-
tioned two modular simulation environments are currently evolving as far
more flexible tools than SimpleScalar: SystemC and Liberty. Unfortunately
until now these environments are incompatible with each other. This means
that so far modules written for SystemC cannot be used together with mod-
ules written for Liberty. Due to this circumstance reuse is strongly limited
to one simulation environment. The Liberty Research Group [38] and the
Alchemy Research Group [37, 5] have both expressed the need for a solu-
tion to this problem. Thus a second part of this project was to investigate
possibilities to connect modules from these two environments.

While these goals might seem very clear it has to be pointed out that
they are almost infinite. The library motivated above can easily contain

hundreds of components. Since I had only little more than 3 months during
this project my goal was to start up this library by creating the absolutely
necessary modules for a working instance of a CMP simulator. 1 have tried
to make these modules as adjustable as possible to already allow for effective
recycling in other simulators. My choices regarding the modules have been
guided by current research but also by the needs of the research group I work
with, the Alchemy Group at INRIA Futurs. To some extend the fact that
a cooperation with the Liberty Research Group at Princeton is planned for
the future also influenced my decision.

The rest of the report is organized as follows. Section 2 describes the most
commonly used simulation environments, two of which I have been working
with. In Section 3 I give an introduction to the domain of Chip Multipro-
cessors by presenting existing solutions and then describe the design choices
I have made. Section 4 talks about the actual implementation details of the
modules chosen in Section 3. Interfacing possibilities of different simulation
environments, including two possible solutions, are being discussed in Sec-
tion 5. In Section 6 I demonstrate how to construct a simulator from the
modules implemented. Finally Section 7 discusses future work to be done
and Section 8 concludes the project experiences.

2 The simulation environments

In this section I will introduce the four simulation environments mentioned
above: SystemC [1|, MicroLib [5], Liberty [13], and SimpleScalar [14]. All
three environments have been widely used in past and current research [16].

I have written all modules in SystemC since this way I was able to reuse
existing tools developed by the research group which I have joined during
this internship. Also SystemC allows for the most flexibility when developing
modules. Thus it was the most important simulation environment for this
project and I will present it first. Next I will present MicroLib, a modular
simulation environment that is a continuation of SystemC. After that I will
introduce the Liberty Simulation Environment (LSE). It is often just called
Liberty after the research groups name that has developed it. Liberty has
been important in the second part of this project when investigating inter-
face possibilities between SystemC and LSE. At last I will shortly present
SimpleScalar. I have not really worked with SimpleScalar and it does not
very well suit my purpose since it is not module based. Still I feel that it
is worth mentioning due to its widespread use in the computer architecture
research community [39].

For a quick overview of all simulation environment please refer to Table
1.

Name

Properties

SystemC

+ o+

+

Highly modular simulation environment.

Implemented as a c++ library.

Leaves huge freedom to the user in defining modules and
communication interfaces.

User has control of the main routine.

Communication between modules via ports is slow.

MicroLib

Highly modular simulation library for processors.
Common interfacing standards.

Many modules that can be branched together.
Wrappers for other simulation environments.

Liberty

+ 4+

Highly modular simulation environment.

Defines its own API and syntax.

Generates c++ code and compiles it into simulator using g++.
Allows for strong optimization due to the fact that the model
structure is known at compile time.

Leaves not much freedom to the user concerning communi-
cation between modules above the simulation level.

Only a handfull of data types. No possibility to pass classes
as data like in SystemC.

Quite a hassle to install.

SimpleScalar

-

Widely used simulator for superscalar processors.
Implemented as parametrized c++ code.

Impractical for simple processor cores like those used in chip
multiprocessors.

Table 1: Different simulation environments

2.1 SystemC

SystemC is a class library implemented in standard C++. It provides
hardware-oriented constructs that allow for low-level as well as high-level
modeling of hardware architectures. It is supported by more than 50 com-
panies from the System on Chip domain [45]. In the follwing I will only
describe the parts of SystemC that have been usefull to me. Please note
that a complete and exhaustive description of SystemC would go beyond
the scope of this report and only bore the reader. I felt though, that basic
knowledge about SystemC should be provided in order to allow to clearly
understand this project.

In SystemC a model might consist of modules with ports, clocks and
signals. In the following I will describe these building parts while explaining
how to implement a simple Linear Feedback Shift Register (LFSR). This is
an standard example in simulation environment documentations since it is
simple to understand and utilizes the most important parts of the simulation
environment. I will first demonstrate the definition of a xor-gate and a flip-
flop and latter combine those to a working 3-bit LFSR as can be seen in
figure 1.

\ 4

Xor Bit1 Bit 2 Bit 3

Y
\ 4

» Gate FlipFlop FlipFlop FlipFlop

Figure 1: A simple three bit Linear Feedback Shift Register (LFSR).

Modules are the basic building blocks written in C++. A new module is
declared like a new C++ class using the construct sc_module. They describe
basic structures like gate and Flip-Flops for detailed-level simulations or
more complex structures like caches, memories and ALUs. In most processor
or hardware system simulations more complex structures are implemented
by modules. This increases facility of inspection and decreases development
time. Also simulation speed is increased since each module is treated as a
separate object during simulation and thus generates additional computation
overhead. The declaration of our xor-gate will thus look like this:

sc_module XorGate {

To be able to communicate amongst each other, modules contain ports.

10

There are two groups of ports. Ports declared as sc_in<type> serve as inputs
to the module and are used to receive data of the type type. Ports declared
as sc_out<type> serve as outputs and are used to send data of the type
type. Let us assume our xor-gate has two inputs and one output. To add
these our declaration has to be changed to:

sc_module XorGate {
sc_in<boolean> opl, op2;
sc_out<boolean> res;

The module can now receive two boolean values, one on each of the ports
opl and op2. They can send their result by writting it to the port named
res. In order to make our gate work we have to register it to the SystemC
engine and create a SystemC processes that will compute the result. This is
done in the constructor of our module:

sc_module XorGate {
sc_in<boolean> opl, op2;
sc_out<boolean> res;

XorGate() {
SC_MODULE() ;
HAS_PROCESS (ComputeResult) ;
sensitive << opl << op2;

}

void ComputeResult() {
res = opl ~ op2;
}
}

First we have registered the module to the SystemC engine by calling
SC_MODULE(). Second we have registered a new process to the SystemC
engine by calling HAS_PROCESS (ComputeResult) and making it sensitive to
both inputs. This means that the SystemC engine will call the method
ComputeResult when one or both values of the inputs change. This method
than computes the result of the operation and writes it to the outport. In
SystemC most ports can be simply read and written like variables. The
SystemC engine will automatically register changes to outports and react
accordingly.

A process can be made sensitive to any number of inputs but not to
outputs. It can also be made sensitive to the falling or rising edge of a clock

11

by writing sensitive_pos « clkor sensitive_neg « clk where clk is the
name of the clock inport. A clock inport is declared using sc_in_clk. In our
flip-flop we will make use of a clock. Additionally we need a variable to store
the memorized value. Since SystemC modules are C++ classes they can
contain any additional variables and methods as needed. Here the flip-flop
code:

sc_module FlipFlop {
sc_in_clk clk;
sc_in<boolean> opin;
sc_out<boolean> opout;
boolean tmp;

FlipFlop() {
SC_MODULE() ;
HAS_PROCESS (Dataln);
sensitive << opin;
HAS_PROCESS (NewCycle) ;
sensitive_pos << clk;

void DatalIn() {
tmp = opin;

}

void NewCycle() {
opout = tmp;
}
}

When a new value arrives at the input inop of our flipflop it will be
memorised temporarily in the variable tmp. In the beginning of the next cycle
the process NewCycle will write this temporary value to its output opout. In
order to create our LFSR module we have to instantiate the correct number
of flip-flops and a xor-gate and connect them. To create these connections
in SystemC singals are used. Signal of the type type are declared using
sc_signal<type>. An outport of one module can be connected to an inport
of the same or of a different modules by a signal. To do so, both ports as
well as the signal need to be of the same data types. To connect outport
with inport we write:

sc_signal<type> signalname;

outport(signalname) ;
inport (signalname) ;

12

This connection works different with clock inports. A clock inport is di-
rectly connected to another clock inport typing submodule->inClock(inClock).
In the case of our LFSR its clock inport needs to be connected to the clock
inports of the flip-flops. Thus the LFSR code will look like this this:

sc_module LSFR {
sc_in_clk clk;

FlipFlop *fpl;
FlipFlop *fp2;
FlipFlop *fp3;
XorGate *xor;
Tee<2> *tee;

LFSRO) {

fpl->clk(clk);
fp2->clk(clk);
fp3->clk(clk);

fpl->opin(xor_to_£fpl);
fpl->opout (fpi_to_fp2);

fp2->opin(fpl_to_£fp2);
fp2->opout (fp2_to_tee);

tee->opin(fp2_to_tee);
tee->opout [0] (tee_to_fp3)
tee->opout[1] (tee_to_xor)

fp3->opin(tee_to_fp3);
fp3->opout (fp3_to_xor) ;

xor->opl(tee_to_xor);

xor->op2(fp3_to_xor) ;
xor->res (xor_to_fpl);

The complete code of the LFSR can be seen in Appendix C. Note that
there is a new module tee. It is needed to communicate the output of £p2 to

13

both fp3 and the xor gate xor because an outport can only be connected to
one inport. The tee module simply writes the data it receives on its inport
to all its outports. Notice that the class Tee<outnum> is templated and the
number of outports is passed during declaration.

Finally we want to simulate our LFSR module. For this we have to
create a method called sc_main. It takes the same arguments as the main
method of standard C++ programs, namely the command line parameters.
When the simulator is compiled the internal main method of the SystemC
library is used. When executed it calls the userdefined sc_main method.
This method has to instantiate the modules used for the simulation and
signal the simulation engine to start.

Before we can run the simulation we have to declare a clock. This is done
using the construct sc_clock. We than instantiate the LFSR module and
connect the clock to it by simply writing 1fsr->clk(clock). The simulation
needs then to be initialize and started for n clock cycles as follows:

sc_initialize();
sc_start(n);

When done simulating the first n cycles the method sc_start returns. It
can be re-executed to continue simulation form where it stopped. SystemC is
not able to rewind in simulation or simulate backwards due to the complexity
it offers.

Since the whole description of the modules is completely done in C++
counting variables, file input/output and so on can be added to the simulator
in order to measure and see the effects of the simulation. This is one of the
big advantages of SystemC that all powerfull tools given to the user by C++
can be reused in defining simulator modules. The whole text of the LFSR
simulator can be found in Appendix C. Output is already contained in this
code.

I have just described the general structure by which SystemC modules
are defined and combined into more complex modules and finally into an
executable simulator. It is of further interest to know a little bit about the
simulation engine of SystemC. In fact, simulation in SystemC is event driven.
This means that calculation processes in modules are started if certain events
arrive. Such an event might be the rising edge of a clock or changed data
on one of the input ports. When a clock cycle in simulation starts, all
processes are executed that are sensitive to the clock edge. These processes
might produce new events by changing the values of their outports who then
change the values of the connected inports. These events are stored in a
last in, first out queue (LIFO). Once all processes have been called SystemC
checks the LIFO for events that would trigger new processes and starts to
execute these, memorising again all newly triggered events. These iterations
are called delta cycles and a clock cycle in simulation is usually split into

14

multiple delta cycles. The simulation for the current clock cycle ends, when
the list of new events is empty at the end of a delta cycle [2].

2.2 MicroLib

MicroLib [5] has been introduced as an effort to build a library of proces-
sor simulator components. It focuses strongly on a modular approach to
simulation. It can be seen as an advancement of the idea provided by the
SystemC simulation environment. In fact most modules for MicroLib have
been developed using SystemC. But in SystemC the huge freedom has led
to a situation where every research group has developed their own modules.
These modules contain often completely different interfaces and because of
this they are mostly incompatible with each other. One of MicroLibs efforts
is to introduce common interface standard such that modules will become
compatible even when developed by different groups. The idea is that re-
searchers should be able to easily download these modules in order to reuse
them for their purpose. They should be able to connect them at their will
and add their own modules. But they should be able to do this without
having to further study the behavior of the SystemC ports interfacing these
modules. Reuse should become as easy as plugging together a computer
workstation: Components that are supposed to fit do so, others not. In fact
MicroLib provides already a set of components including processors [22, 15]
and a big library of caches [46]. These modules can be arbitrarily branched
together as long as their connection makes any sense.

A major difference to past developments is that MicroLib is not trying
to compete with other existing modular environments like Liberty. Instead
its goal is to introduce wrappers that will allow it to connect modules from
different simulation environments. A wrapper for SimpleScalar has already
been introduced and as I will present in section 5.2 a Liberty wrapper that
is currently being worked on. By this MicroLib is trying to build the largest
possible library of component modules for processor simulation.

Module 1 Module 2

outValid invalid

: Data can be accepted?
outAccept :

Data will be available.

,, . inAccept

Can data be send? :
: outEnable

inEnable

outData inData
Computation writes

data to port.

Start computation
when data arrived.

C—— 71T CO I .1
| I— N i B |

Figure 2: Handshaking protocol introduced by MicroLib.

15

In order to increase compatibility MicroLib has introduced a handshaking
protocol to pass values between modules. This handshaking is always done
for groups of ports that are supposed to process coherent data. Such ports
might be the data, address and command ports going from the CPU to the
cache. It is evident that the cache cannot process the query unless all three
values are known, thus they can be seen as a group. Each such group gets a
set of three control lines assigned to them, namely wvalid, acknowledge, and
enable. While valid and enable connect the sending module to the receiving
module, acknowledge connects the receiving module to the sending module.
The functions of the handshaking signals are as follows. Valid serves to
notify the receiving module that valid data will or will not be available by
sending true or false. The receiver uses acknowledge to communicate to
the sender if he can process the data. Finally the sender has to write the data
to the corresponding ports and set enable to true to indicate that the data
is available. In fact, we will see a very similar handshaking protocol later on
in Liberty (Section 2.3). I have implemented all my modules such that they
use this handshaking protocol. Figure 2 shows a schema of this protocol.
The following code is an example of how the protocol implementation for
one group of ports could look like:

DataTreater(const sc_module_name& name) : sc_module(name) {

SC_METHOD (ForwardValid) ;
sensitive << inValid;
SC_METHOD (ForwardEnable) ;
sensitive << inEnable;
SC_METHOD (ForwardAccept) ;
sensitive << inAccept;

void ForwardValid() {
if (inEnable) {
// data arrived, threat it.

// forward the signal
outValid = inEnable;

}

// Forwards and broadcast accept signal.

16

void ForwardAccept() {

// Accept all incoming data.
outAccept = inValid;
}

// Forwards enable signals.
void ForwardEnable() {

// Allways send data when accepted
outEnable = inAccept;

Another tool so far distributed on MicroLib is FastSysC [2], a fast Sys-
temC simulation engine. Since I have used it to speed up my simulations I
have added a short description to the end of this report. It is available in
appendix A.

2.3 Liberty

When speaking about Liberty most frequently the Liberty Simulation Envi-
ronment (LSE) [13] is meant. While similar to SystemC and MicroLib in its
overall structure, LSE does still differ. In LSE models are also constructed
modular in a manner parallel to that of real hardware structures. LSE spec-
ifications, that are compiled into simulators, are a collection of connected
modules that are instantiated from templates. This templates are called
modules. There are two types of modules: leaf modules and hierarchical
modules. The behavior of leaf modules is specified by sequential code that
uses the LSE API to compute, send and receive data. On the contrary hier-
archical modules are composed of a collection of interconnected leaf modules.
These hierarchical modules can still contain special build algorithms allow-
ing for an enormous flexibility. Thus, LSE provides low overhead component
based reuse [13].

A major difference to other simulation system is, that LSE model specifi-
cations can be compiled, since the structure of the model is known at compile
time. Thus optimizations like those done by the FastSysC schedule genera-
tor? can be easily performet by the LSE compiler. In addition the compiler
can remove unused signals and optimize code where needed. For example
even when FastSysC genereates a static schedule every component still has
its own processes which needs to be called during most simulation cycles.
Such calls generate computation overhead due to access to the stack. The

?Please see appendix A for details.

17

Liberty compiler can actually generate sequential code. When this code is
finally compiled by gcc it can run much more efficient than that written by
the user when working with SystemC.

Liberty modules are defined in Liberty Structural Specification (LSS)
files. Like in SystemC they contain inports and outports in arbitrary num-
bers. Unlike in SystemC where each port can be of any type, even a class
type, LSE supports only very basic types like integers, characters, strings,
arrays and structs. This is due to an otherwise very usefull feature in Lib-
erty. This feature is the support for polymorphism that is not provided in
this manner by SystemC. In Liberty data types for ports and other entities
can be declared to be polymorphic (i.e. to have many types). Utilization is
very convenient since LSE tries to determine the appropriate type for poly-
morphic ports and variables automatically when possible [13]. This futher
facilitates module reuse.

To specify component behavior or allow for later parametrization user-
points are used. These are variables that contain algorithms called on special
events. There are userpoints for module initialization, userpoints for when
data arrives on a port or simply user defined userpoints that are called ac-
cording to module specification. During compilation LSE simply inserts the
code contained in userpoints in the appropriate places.

The distribution of LSE contains already a component library of standard
components like queues, routers, arbiters, control modules, and other utility
modules. These components can be easily reconfigured using userpoints to
create most common modules. To use these modules the library has to be
included using the command using corelib. For example in order to cre-
ate a xor gate a combiner module can be used. The combiner module is
a flexible module whose instances can be parametrized to compute an arbi-
trary number of outputs from an arbitrary number of inputs. The userpoint
combine contains the code that computes the result. The LSS code of the
xor gate looks like this:

module xor_gate {
using corelib;

inport inO:boolean;
inport inl:boolean;
outport out:boolean;

instance gate:combiner;

gate.inputs={"in0","inl1"};
gate.outputs={"out"};

gate.combine = <<< *out_id=in0_id;

18

xout_data = (*inO_data) ~ (*inl_data);
*out_status = LSE_signal_something; >>>;

LSS_connect_bus(in0,gate.in0,in0.width);

LSS_connect_bus(inl,gate.inl,inl.width);

LSS_connect_bus(gate.out,out,out.width) ;
};

To connect two ports in LSE no special signal object is required. Instead
the user simply writes modulel.outport ->[type] module2.inport. The
type is optional and can server for type resolution during compilation when
there is no other mean of determining a connection type. This can happen
when data is circularly passed between polymorphic modules.

Another difference in regard to SystemC is, that LSE handles timing
quite different. Instead of providing clocks, LSE propagates stall signals.
A special control signal structure is used for that, similar to that described
in Section 2.2 regarding MicroLib. In addition to the data a port contains
three control lines, namely if the data is wvalid, an acknowledge signal, and
an enable signal. At the beginning of a cycle all control lines are set to
unknown. In the same manner as described above for FastSysC the singal
lines are used in LSE. Valid signals to the receiver whether or not data is
going to be available. The receiver signals the sender via acknowledge if he
can accept the data. Final the sender writes the data to the port and signals
the receiver using the enable signal.

LSE also offers a far more advanced way of data monitoring and log-
ging than SystemC. In SystemC the user monitored actions by placing if-
statements and printf calls all over the module code. LSE provides special
collector objects for this. They are defined using the keyword collector.
The eventname to be monitored and the name of the monitored module are
given as parameters. After that actions to be taken when the monitored
event takes place can be defined. Again during compilation LSE can choose
the best possible placement for the code in the final simulator.

With these tools the LFSR from figure 1 can already be constructed.
Parts of the code follow. Please not that we only needed to redefine the xor
gate. The other modules like flipflop (delay) and the tee are taken directly
from the Liberty corelib

using corelib;
include "xor_gate.lss";

instance bitO : delay;
instance bitl : delay;
instance bit2 : delay;
instance xor : xor_gate;

19

instance bitl_tee : tee;

bit0.initial_state = <<< *init_id = LSE_dynid_create();
*init_value = TRUE;
return TRUE; >>>;

bit2.out -> bitl.in;
bitl.out -> bitl_tee.in;
bitl_tee.out[0] -> xor.in0;
bitl_tee.out[1] -> bit0.in;
bit0.out -> xor.ini;
xor.out -> bit2.in;

collector STORED_DATA on "bit2" {

record=<<<
printf(LSE_time_print_args(LSE_time_now));
printf(": bit2=%d\n", *datap);
>>>
};

Again the full code of the LFSR can be found in Appendix D.

2.4 SimpleScalar

SimpleScalar [14] is a suit of simulation tools that offer low detail and
high detail simulation of microprocessors. These levels range from a high-
performance functional simulator to detailed models of superscalar proces-
sors including caches, speculative execution and branch prediction. In dif-
ference to SystemC and Liberty SimpleScalar is not modular. It is designed
to simulate processors and a part of their environment, not more. Because
of this SimpleScalar is well optimized and has been widely used in processor
simulation [39, 45]. SimpleScalar is also available as source code. It has
been initially developed to support a MIPS derived instruction set architec-
ture (ISA) called PISA. Later versions have added support for architectures
such as Alpha, ARM, PowerPC, and x86. Thus it really is not one simulator
but contains multiple simulation and emulation programs. The most used

20

of these simulators is sim-outorder that lets the user simulate out-of-order?
Processors.

3 Design choices

The goal was to create a library that would allow to construct a running
CMP simulator. In order to do so I needed to implement a set of compo-
nents that every CMP system needs. These components are clearly at least
a processor core, caches and memories, and the substantial interconnect. Es-
pecially the interconnect needs to be chosen with care since it dominates the
overall architecture of the CMP. In the following I will present different ex-
isting CMPs and their interconnection networks as well as some stand-alone
interconnect solutions. I will evaluate these approaches and excerpt from
them different possibilities for the desired modules. Finally I will present
and explain my choices.

3.1 Existing CMP architectures and interconnects

I will start by presenting three existing Chip Multiprocessors and their differ-
ent interconnection architectures. The first two, the Stanford Hydra CMP
and the MIT RAW Microprocessor, are research projects. The Stanford
Hyrda CMP implements a shared bus architecture. A completely different
approach is presented by the MIT RAW Processor that implements multiple
packet-switched networks. The third solution presented, the Cell Processor,
is a commercial product that is currently in development. Its interconnect
is a mergence of the first two solutions. After having presented the CMP
solutions and their networks I will describe two further interconnection archi-
tectures. One is an interconnect called crossbar and the other is an all-round
implementation of a packet-switched network on chip called SPIN.

3.1.1 A shared bus solution: Stanford Hydra CMP

The Stanford Hydra Chip Multiprocessor [12] contains four MIPS 4 based
cores. Each of the cores contains its own primary instruction and data
caches. The Hydra cores are in-order processors. They are connected to a
single shared second level cache via two shared buses: one 256 bits wide bus

30ut-of-order means that the processor rearranges instructions in regard to the con-
straints given by dependencies. This allows to execute further instructions when only a
part of the processor is stalled by the current instruction. Out-of-order execution is widely
used in today’s superscalar processors. In contrast in-order processors execute instructions
in the same order as they arrive from memory. These processors are slower but usually
consume much less die area.

4MIPS stand for Machine without Interlocked PipeStages. It is a Reduced Instruction
Set Computer (RISC) architecture developed 1981 at Stanford University that is being
used in processors worldwide until today.

21

for read operations and one 64 bits wide bus for write-through operations.
Both buses are pipelined in order to maintain a high clock frequency. Thanks
to this data can enter and leave each bus on every clock cycle.

Central Bus Arbiter

CPU CPU CPU CPU
..
Llinst. + L1 Data Llinst. + L1Data Llinst. L1Data Llinst. : L1Data
Cache E Cache Cache E Cache Cache E Cache Cache E Cache
.......... R, R R R
Memory Controller Memory Controller Memory Controller Memory Controller

A A¢ A A¢ A A¢ A A¢

[64 bit Write-through Bus]

[256 bit Read / Replace Bus]

A 4 ¢ ¢

| Memory Interface | | I/O Interface |

¢ ¢

Figure 3: Architecture of the Hydra CMP without the speculative support.

L2 Cache

The read bus was designed to handle an entire cache line in one clock
cycle. It thus allows for a very fast communcation between processors, sec-
ondary cache and off-chip memory. The write-through bus communicates
all writes made by the four cores directly to the second level cache. It also
broadcasts the write to other processors, eventually invalidating correspond-
ing cache lines in their primary caches. Thus it helps to maintain coherent
level one caches. The general Hydra architecture can be seen in figure 3.

Hydras shared bus solution allows for a latency of 10 to 20 cycles for
interprocessor communication. Unfortunately it does not scale well beyond
8 processors as its creators have admitted themselves [12]. It is clear that a
single bus cannot cope with an arbitrarily increasing number of processors.
Even if we increase the bandwidth of the bus it has no ability to respond to
multiple requests at a time. Thus with the number of processors the latency
for memory requests grows. The authors of the Hydra CMP propose to use
either more buses, a crossbar interconnection or a hierarchy of connections
to account for this problem. Some of these suggestions I will discus in the
following sections.

The Hydra CMP implements what is called thread-level speculation. This
method tries to exploit instruction level parallelism (ILP) in sequential unipro-
cessor programs. To do so the Hydra CMP arbitrary splits a program code
sequence into a sequenced group of threads that can be executed in parallel
on different cores. The Hydra CMP contains special hardware that ensures

22

that no data dependencies ® between threads are violated. In the case that a
thread from the sequence causes a true dependency violation the Hydra will
re-execute this sequence with the correct data once this data is available.

The performance of the Hydra CMP is given as speedup compared to
the execution time of the same code on one Hydra core. While in fact the
Hydra CMP with its four cores does extract quite high speed up this needs
to be seen with careful consideration since a single Hydra Core is far less
powerful than a superscalar processor taking the same area of the die chip
as four Hydra cores.

3.1.2 Packet-switched networks: MIT RAW Microprocessor

processor
core

processor

o Dynamic network 1 (user level)

------- Dynamic network 2 (supervisor level)
routers routers

ALLLLLLLLLLE - each dynamic network has its own router
ulll on every tile

processor

processor

core —— Two Static networks (for direct operant passing)
one static router with two crossbars on every

tile, one crossbar for each network,
routers routers

............ Sdeennennand] . crossbars on one tile are connected
:‘ﬁ m
— 11

Figure 4: A schematic 2x2 grid of RAW tiles.

The MIT RAW Microprocessor [9] is another example of a chip multi-
processor. It is also implemented using MIPS based cores. In contrast to the
Hydra CMP that used a shared bus the RAW microprocessor implements
several networks on its chip to connect its cores. The chip is segmented
into quadratic tiles that each contain a processor, a level one data cache, a
software managed level one program cache, and programmable routers. The
routers implement nodes of the network that control the data flow. They are
interconnected via links and form three global on chip networks. The schema
of this network can be seen in figure 4. Each Tile contains three routers:
two dynamic routers and one static. Routers of one network are connected
to routers of the same network on neighboring tiles via a full duplex 32 bit
link. In the case of the static routers two such links are used between two
neighboring tiles.

5The possible dependencies are: read after write (RAW), write after read (WAR), and
write after write (WAW). The exact algorithm by which Hydra handles these dependencies
is not of importance to this project and is thus not further explained. It can be seen in
detail in [12].

23

The two dynamic networks are packet-switched and implement wormhole-
routing. Packet-switched means that data is divided into several smaller
chunks called packets that are send over the network. This is done instead
of sending the data in a continuous stream. While a continuous stream guar-
anties bandwidth it completely blocks a part of the network for other users.
This is only reasonable if high-bandwidth applications are used. Packet-
switched networks on the contrary do not guaranty bandwidth but allow
multiple users to take advantage of one connection simultaneously.

Wormbhole-routing means that instead of waiting until the whole packet
arrives the router only waits for the packet header and then forwards it al-
ready to the next node in the network. This way packets worm their way
through the network. Unfortunately in a wormhole-routed network conges-
tion might occur. This can happen when to many messages are fed into the
network and the buffers of the routers fill up. In this case a network will
simply stop to accept new messages and not deliver the ones pending. Thus
this phenomenon is also called deadlock.

There are two solutions for this problem. The first one is called deadlock
prevention. It allows every network user to send only a certain amount of
messages at a time based on a credit system. While this solution prevents
congestion it limits network performance. The second solution is called dead-
lock recovery. In this case there is special hardware to detect network con-
gestion. When this happens the network contents are partially flushed to a
temporary buffer in order to allow for recovery. While this solution does not
limit performance it necessitates an additional framework to move the data
out of the network.

The RAW Microprocessor implements both types of networks. One of the
dynamic networks is dedicated to trusted users, like the operating system,
data caches and DMA controllers. This network uses the deadlock prevention
technique. The other dynamic network can be used by programs to pass
messages. It implements deadlock recovery. When congestion occurs the
contents of the network are flushed to external buffers using the first dynamic
network.

The third and static network has a quite different purpose. It is used
directly by the hardware to pass operands between the compute pipelines of
different cores. In order to be efficient this network is directly connected to
the pipeline. In fact when the program writes to register 25 through 28 the
value is not stores in the register file but send to the static network. When
reading from these registers the processors reads from the incoming static
network buffers. If these buffers are empty the processor stalls and waits
until data arrives. The output is buffered as well and when buffers are full
the pipeline will stall as well.

In order to control the network each tile contains two dynamic routers and
static router. Each router is connect to one of the three networks. While the
dynamic routers switch the packets according to the packet header the static

24

router is run by a program. It fetches its instructions from the corresponding
level one instruction cache. These instructions contain routes for both of the
static routers crossbars. Crossbars are the hardware structures that create
connections between the incoming and the outgoing network links. They are
further explained in section 3.1.4. The crossbars are connected to the four
links of the four neighboring tiles, the processor, the router pipeline and to
each other. A static router instruction sets the connections of the crossbars
and instructs the router pipeline in order to implement simple loops and
conditions for the static router program. This architecture allows the RAW
Microprocessor to pass values between two computing cores with a latency
of only 24+ X + 1+ Y + 2 cycles where X and Y are the number of tiles
the signal has to travel horizontally and vertically. Two cycles are needed
to introduce the signal into the network, X cycles for the horizontal tiles,
one cycle for the turn, Y cycles for the vertical tiles, and finally two cycles
for the singal to reenter the destination pipeline. The one cycle latency for
the turn is due to optimizations to the wires that exploit the fact that they
mainly run straight between the tiles.

Figure 4 displays a grid of only 2x2 tiles. It is evident that this structure
is scalable in the number of tiles. The RAW Chip is implemented with
16 tiles but multiple chips are branched together to form larger structures.
Performance of the RAW Chip is also measured in speedup compared to a
single RAW tile. The Results show also an impressive speedup in certain
applications. Like in Hydra this speedup is very dependant on the ILP
present in the program executed.

A critical point not mentioned in any RAW paper I have found is actual
network saturation when the grid grows bigger. Since memories are con-
nected to the outside of the raw grid (as on all processor dies) the inner tiles
of the grid are further away from them. The RAW team has failed to inves-
tigate the effect of larger grids then just 16 processors. Most likely in the
case of a huge grid the inner cores will experience very fast rising memory
access latency in applications that require high bandwidth. This is a very
important point that should be yet considered.

3.1.3 A ring bus: Cell Processor

The Cell Microprocessor [44, 42, 43, 26] is being developed in cooperation
by Sony, Toshiba, and IBM. Unlike the first two processors described this is
a commercial product that is intended to be used in Sony’s Playstation 3.
Due to this fact there is only little detailed information publicly available.
Thus I was not able to find more reliable sources than the three mentioned
above except for magazine articles. Due to this secrecy the Cell processor
is mot suited for serving as a main model for our modules. It would be
almost impossible to implement it realistically enough due to a lot of missing
information on architectural details. Since it implements a different approach

25

and confirms some general trends in CMPs I felt that the Cell Processor was
still worth mentioning.

PowerPC
SPE SPE SPE SPE L2 |l
g core
A A A A A
\ 4 \ 4 \ 4 \ 4 \ 4
On-Chip Bus: 96 bytes / cycle
A A A A A A
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4
Memory I/O
SPE SPE SPE SPE Controller Controler

! !

Figure 5: High-level organization of the Cell Processor.

The Cell processor implements a non homogeneous CMP. Figure 5 dis-
plays its general structure. It contains one master CPU and eight slave
cores. The master CPU is a 64 bit dual threaded Simultaneous Multithread-
ing (SMT) PowerPC core. SMT means that multiple threads are executed
in parallel on a machine in order to exploit ILP. In the case of the Cell Pro-
cessors master CPU two in-order pipelines allow for the execution of two
threads in parallel. This core is equipped with primary 32 KB instruction
and data caches and a 512 KB level two cache.

The eight smaller cores are called Synergistic Processor Elements (SPE).
These cores are dual issue SIMDS processors. This is why they are sometimes
also called SIMD Processor Elements (SPE). A new ISA has been defined in
order to allow for addressing of a 128 entry register file. Each entry is 128
bits wide. Thus each of the two threads of a SPE is capable of operating on
four 32 bit values in parallel. Each SPE has a local 256 KB static RAM. The
SPEs abstain from the use of a cache hierarchy. Instead the master CPU
can instruct them to copy a certain location of main memory via DMAT into
its local SRAM. In the same manner the master CPU can later instruct the
SPEs to copy the data back again.

All SPEs as well as the master CPU are connected to memory and I/O

5Single Instruction Multiple Data: This means that one instruction of the processor
operates on multiple values of data in parallel.

"Direct Memory Access: A method were not software but a special hardware resource
manages the transfer of data blocks from one memory address to another or to a completely
different memory component as in the case of the Cell Processor.

26

via a high performance bus called Element Interface Bus (EIB). It consists
of 4 unidirectional data rings, two in one direction and two in the other.
The rings run at half the processor frequency and transport a total of up to
96 bytes per cycle. Each ring supports up to three simultaneously transfers
when these are done between neighboring nodes. Thus the EIB hardware
does more resemble a network than a real bus.

3.1.4 A crossbar interconnect

A crossbar can be seen in Figure 6. In general a crossbar connects n compo-
nents on one side with m components on the other side. The particularity of
a crossbar is, that it allows for multiple parallel connections if these are inde-
pendent. Let us take for example a crossbar that connects eight CPU cores
to four secondary cache banks. In this case any four of the processors can
access the level two cache in parallel as long as they each access a different
cache bank. In order to allow for this the crossbar needs four internal buses.
Each cache bank is connected with exactly on of these buses (and each with
a different). Opposite to this each CPU core is connected to all four buses.
When any of the cores makes a request to access one of the cache banks it
will be connected to the appropriate bus given that this bus is not currently
in use. An internal arbiter controls accesses and eventually puts a CPU core
on wait if two or more cores try to access the same cache bank in parallel.
Crossbars are not only used for huge buses. In each of the routers as used
by the RAW Microprocessor a crossbar is used. The static router even uses
two.

However it is evident that a crossbar scales by the square of the number

Data
Buses
going
into
the —>
crossbar
——

b

Data Buses leaving the crossbar

Figure 6: A 4x4 crossbar. Data arriving on the inports of the crossbar (left)
can be routed in an arbitrary manner to the outports (bottom) by setting
the appropriate connections (dark dots).

27

of components connected to it. In the example above we needed four buses
and 32 connections to these. Thus I have found no implementations using
a crossbar as a chip interconnect with more than eight processors attached.
A recent research effort [36] modeled such a crossbar connecting eight cores
with a shared level two cache. It confirms the huge area overhead generated
by a crossbar interconnect. It has to be mentioned though that in this
paper area overhead was also very dependant on the mechanism of cache
sharing. Thus the results are hard to interpret regarding a simple crossbar
that connects for example only processors.

3.1.5 SPIN

SPIN stands for Scalable Programmable Integrated Network. While the
RAW networks are adapted to the processors needs, SPIN has been designed
to serve as an interconnect for systems on chip (SoC) in general [8]. SPIN
is a packet switching network that consists of routers as the network nodes
and bidirectional point to point links as connections. Additional wrappers
server as an interface to the network that allows clients to send and receive
messages. These wrappers translate address space requests into packets with
the according node address and inject them into the network. When the
packets arrives at its destination a wrapper re-translates it into an address
space request. The packets send over the network are split into 32bit pieces
that are called flits (flow control units). Each packet contains a header
flit with the destination address and packet type and size. The packets are
terminated by a control flit that contains a check sum (CRC). The packets
are wormholed through the network by the routers.

4 flit input 1 flit output

buffers buffers
- H ——
7*,[[[[}_ - 10 x 10 _[H*,
Partial
74'[[[']— [Crossbar |:| e
——m, H ——
Routing
*4'[[[']— Logic [—1—r
i H ——
i H ——
i H ——

r {IIIIIIIIIIIIIIIIH<J

LT

18 flit shared output buffers

Figure 7: RSPIN: The router for the SPIN network.

28

A router for SPIN, called RSPIN, can be seen in figure 7. It has eight
ingoing and eight outgoing connections (network links). The ingoing connec-
tions contain buffers for up to four flits each and the outgoing connections
contain a buffer for one flit each. In addition each RSPIN contains two
18 flit output buffers that are shared by all incoming connections. These
buffers have greater priority when competing with the input buffers for an
output link. This allows to reduce contention [7]. The central component of
the RSPIN is a 10 x 10 partial crossbar. This crossbar is only partial since
it is designed for a special network topology and only certain connections
between links are possible.

Figure 8: The FAT tree topology of SPIN.

The topology that has been chosen by the SPIN designers is called a fat
tree. This is a tree structure with routers on the nodes and terminals on the
leaves of the network graph. In a fat tree each node can contain multiple
fathers and guarantees enough bandwidth to the higher level for all of its
children. An example of a fat-tree topology with 16 clients (leaves) can be
seen in figure 8. Another fat-tree can be seen in figure 9. It is evident that
fat-tree topologies are scalable.

For evaluation the network has been compared to a PI® bus. In the test
between four and 32 cores were used and delivery time was measured to de-
liver all messages in a pooling. Pooling means that each client sends messages
to all other clients. Another measurement was the latency of messages when
varying overall network load. Results showed that SPIN beats the PI bus
in latency time when at least 16 clients were used. It is important to note
that this result was only received when SPIN used a special split protocol
allowing it to send a second request (message) before the first one was an-
swered by the target. If this protocol was not used SPIN produced higher
latencies than the PI bus even with 32 clients. In the saturation test SPIN
offered a lot more possible load by saturating for an offered load of 28% of
the maximum possible load. The PI bus saturated already with an offered
load of 4%.

8Peripheral Interface

29

—_ —_ — —j —_ | —_ —j —_ — | —_ [— [—_ 3rd level of routers

each line represents
4 connections

\1- = R = == N | e R = N == N == 2nd level of routers
\\e:"zé:‘/‘ \\e:"zé:‘/‘ '\e:"zé:‘(' ‘\e:"z@‘::‘/' each line represents
PESIZONNN PESIZONNN PLSIZa NN e SVZaN L connection
ey 0 e oy ey 0 e paan pzan oA s paan pzan oA I 1stlevel of routers

U ZUN ZEIN U ZEN ZEN ZEN ZEN ZEN ZEN ZEIN JEN JEN ZEN ZUN ZUIN the 64 clients

Figure 9: A 3 level fat-tree topology. The thick connection lines connect
each router from a group of four with the correspondint router from a second
group of four routers.

3.2 Selecting a Network on Chip for CMP

When selecting an interconnection network I was in particular looking for a
solution that would scale well beyond hundreds of processors. As possible
candidates I have considered the interconnects presented above. They were:

e A shared bus system like in the Hydra CMP.

e A virtual shared bus system that is implemented using a small network
(four rings) as in the Cell processor.

e Statically or dynamically routed networks, like in the RAW Micropro-
cessor or SPIN.

e A crossbar interconnect.

As T have mentioned in section 3.1.1 when talking about Hydra the shared
bus system suffers from lack of scalability. A recent research effort has further
examined this problem by connecting 4, 8, and 16 cores via a shared bus.
The percentual performance decrease due to connection overhead grew with
the number of processors [36]. The same was true for a crossbar and when
looking at current solutions it is clear that a crossbar for a hundred processors
is virtually impossible.

There is still another problem encountered with the interconnection ar-
chitectures just mentioned. As well the shared bus as the crossbar suffer from
a common disease: they rely on a global control of the information traffic.
But this method is limited in scalability due to the fact that the intercon-
nect needs to know each components state [28]. Thus neither a shared bus
solution nor a crossbar seemed to suit the requirements for a highly scalable
interconnection component.

The Cell Processor has solved the connection issue by implementing a
virtual bus that consists really of a small network on chip. This solution is
similar to SPIN where a complete network on chip is virtually hidden to the
clients by introducing wrappers that translate address space requests into

30

packets. RAWs solution differs in the fact that the clients actually see the
network. They are responsible themselves to correctly address packages and
for their coherency.

While all these network based approaches have not really been tested
beyond a handfull of processors they seems to be much more promising than
a simple hardware bus or crossbar. The RAW processor actually succeeded
in connecting the most cores. And even though I doubt that RAWs archi-
tecture will flawlessly allow to connect hundreds of corres with its current
topology further research might find new network topologies that solve this
problem. Considering that three of the solutions proposed were based on a
network (RAW, Cell, SPIN) I have decided to implement a packet-switched
network module. I have tried to keep the module as general as possible only
hardcoding the most necessary structures for packet-switching. This way I
have left the freedom to the user of the module to actually implement the
details by setting parameters and adding code.

3.3 Selecting a core for CMP

Above I have presented three existing Chip Multiprocessors. The first two,
the Stanford Hydra CMP and the MIT RAW Microprocessor, are research
projects. The third processor presented, the Cell Processor, is a commercial
product that is currently in development. While there are other CMPs 1
believe these processors cover a wide range of possibilities. In fact the Hydra
CMP and the RAW Microprocessor are the most referenced CMPs found in
research papers. The Cell Processor seems to be the first high-performance
general-purpose commercial product that implements as many as 9 separate
cores on a single chip. Since I was looking for structures that would scale
to huge numbers of processors I have not investigated further CMPs like
the IBM Power 4 which implements two superscalar cores on a single chip
[31, 41].

When looking at the three cores presented several similarities stand out:

e All cores have some type of local instruction and data storage. These
are either level one caches or simple SRAM.

e Fach of the CMPs uses in-order execution in their cores. Even the
master CPU of the Cell Processor is in-order.

e The cores are all held simple executing RISC code. In fact the Cell
Processor is even the only one using SMT. All other cores are strict
single-issue processors.

e The Cell Processor is the only one even having a special master CPU.
The other architectures are completely homogeneous and the master
is chosen in software by the operating system for example.

31

The first point is quite logical and inherited from the single processor. In
order to allow for fast execution the instructions and data worked on have to
be as close to the compute elements as possible. This is required to reduce
latency due to wire delay. Thus the implementation of level one caches for
instructions and data is essential even in the most simple cores in order to
have an efficient execution.

The second and third point results from the fact that the consumend
area of the processor increases drastically with its complexity. As noticed
in [40] the gain from more cores due to saved space is higher than the loss
due to in-order execution. Thus I have decided to implement a simple core
that was designed for resuse. Because of this the use of existing models like
PowerPC750, O0o0SysC or even SimpleScalar [15, 22, 14] as cores was not
an option.

The forth point did not change anything in the choice of the core. It is
worth mentioning that my implementation does well support such a master.
One can easily branch more complex processor modules like the PowerPC750
or Oo0OSysC to a constructed simulation network with lots of basic cores.

Further points to consider were the instruction set architecture (ISA)
and that the processor be not out of date. I considered the MIPS and the
PowerP(C ISA since they have been used in the existing solutions. Also both
are very widespread and supported by gcc, a very important point when
choosing the ISA since researchers need to be able to compile test programs.

I finally decided for the PowerPC version since our team had already
experience with it and since we had a valid PowerPC emulator to verify
my results. As a concrete processor I chose the PowerPC 405. My choice
was motivated by the fact that it is a PowerPC core specially designed for
the use in systems on chip [18]. It implements a 5 state in-order pipeline
and contains separate instruction and data primary caches. This suited
perfectly the requirements for local storage in each core. The PowerPC 405
is commonly used on the market segment an still being supported [31, 30].
Because of that it is relatively” well documented [17, 18]. Thus the PowerPC
405 suited all the requirements.

3.4 Selecting a memory

A last decision I made and which needs no further discussion, is to implement
a memory module. This module could serve as the central memory or be
used locally for each processor core. Again I have tried to make it as flexible
as possible by allowing the memory to have as many ports as desired and to
adjust timing.

9 Architectural details of commercial processors are often kept secret by the companies.
With relatively I mean that human-readable information is available that is far more
detailed than that available on some other processors. Please refer to section 4.1.1.

32

4 TImplementation of the modules

This section describes architectural details about the three modules imple-
mented. These modules are a PowerPC 405 module, a network on chip
(NoC) module, and a memory module as decided in the previous section.

4.1 The PowerPC 405 processor module

Developement and coding of the PowerPC 405 processor module required
by far the most time. Thus I will start by naming some common problems
encountered when working on the PowerPC 405 module. Next I will give
an introducing the hardware architecture of the PowerPC 405 chip followed
by some key facts about the PowerPC 405 ISA. The final part concerns the
actual implementation of the module for SystemC. It talks also about how I
tried to improve simulation speed.

4.1.1 Problems encountered

The following list names only a few difficulties encountered when implement-
ing a processor:

e The manuals and white papers often contain only sketchy information
that mostly creates more new questions than it answers.

e Processors often split incoming instructions into multiple microinstruc-
tions. This behavior is left completely undocumented and the devel-
oper has to make guesses based on bits of information gathered from
the most unlikely places of the manual or from the web community.

e Choices made regarding implementation techniques can later on create
new problems. Using the host system to execute system calls for ex-
ample creates the need to have direct accesse into simulated memory
instead of using the simulated datapaths.

e Debugging is very time consuming due to the complexity of the struc-
tured model. It can be shortened by generating a lot of output during
execution. But even then the error has to be found in this output.

e Finally in order to test and debug certain parts of the module each
time new testing code has to be written and compiled. In special cases
this includes time-killing coding in assembler.

I felt that these problems are worth mentioning since they are specific
to this domain and do not just result from typical problems encountered
during code development. The research team I have been working with has
confirmed to me that the mentioned issues are mostly unavoidable. Some

33

are also mentioned in [5]. There is no real solution to these matters. I have
tried to make my code as readable and documented as possible in order to
facilitate debugging and reuse by others. When a wverbose variable is set the
simulator will print almost every of its actions on the screen in detail allowing
again for better debugging. This has helped me save a lot of hours during
development I believe. Unfortunately the problem mentioned concerning the
documentation has cost me a lot of time. It happend to me multiple times
that I had implemented a feature into the processor and have later found
more detailed information that made me change the implementation. The
reason for this was not that I have not searched exhaustively enough, but
that this information is given on completely unexpected placed.

4.1.2 Hardware architecture

Figure 10 shows the PowerPC 405 block diagram. The PowerPC 405 consists
of three parts: the CPU, the MMU and the caches. There are two separate
caches, one for instructions and one for data.

Please note that the MMU can be simply left away. Since I am only
executing user code at the moment this is what I did in order to save devel-
opment time and increase simulation speed. This is also why I am not going
to further investigate its functions in this report. For future implementations
the MMU can be added relatively fast since the code is structured in a very
clear manner in the area where CPU and caches interact. The same is true

Caches MMU 405 CPU Core
external Data
Cache <—/ > H
I-Cache + 3-Element
or — L Controller < Fetch ' Fetch
Memory | feeeeeeeeeeeeeeeees phys. | Instruction Shadow and : Queue:
Address TLB (4 Entry) < Decode : PFB1,
Instruction Cache virt. Logic H PFBO,
¢ Address : DCD
Unified TLB
(64 Entry)
external A 4
Cache <—— ¢ virt. ,
Data Cache Address Execute Unit (EXU)
o phys. <
Memory | feeeeeeeeeeeeeees Address Data Shadow | | |.o....... femememempma oo
< TLB (8 Entry) ! :
D-Cache 32x32 . AW ' MAC
Controller < 3| GPR i .
Data

Figure 10: PowerPC 405 CPU core block diagram. Note that the MMU can
be switched of in the PowerPC 405. Since we are momentarily only executing
user code we simply left out the MMU in our first implementation.

34

for the processors handling of exceptions. Since I run test programs only in
user mode and suppose them to be correct no exceptions need to be handled.
I have thus not implemented the exception handling in the simulator.

The CPU contains five pipeline stages. They are: instruction fetch (IF),
instruction decode (ID), execute (EX), register write-back (WB), and load
write-back (LWB). These stages are implemented by two units: the instruc-
tion fetch unit and the execute unit.

The instruction fetch unit containts the instruction fetcher. It imple-
ments a three stage instruction queue with its elements in the following
order: prefetch buffer 1 (PFB1), prefetch buffer 0 (PFB0), decode (DCD).
Instructions are fetched two at a time along the predicted path. Branch
prediction is done in DCD and PFB0. If for example a branch instruction
in PFBO0 is predicted taken than the predicted path is fetched into PFBI.
PFBI1 is flushed before if it already contained the next instruction. When
the instruction queue is empty instructions are fetched directly into the DCD
buffer. The Instruction contained in DCD is decoded during the ID stage. It
can then pass into the Execute stage next cycle. All instructions must pass
through DCD before entering the execute unit.

The ezecute unit (EXU) contains the arithmetic logic unit (ALU), the
multiply-accumulate unit (MAC), and the register file (RF). It is a singe is-
sue unit, meaning that it can only start executing one instruction at a time.
Instructions are executed in-order with an exception being load instructions.
These can wait for the data to arrive from memory while following instruc-
tions continue execution given that they are independent of the load result.
All results except for load results are written into the register file during the
write-back stage. The results of load instructions are written back during
the load write-back stage in witch those instructions also wait for the data to
arrive from memory. Thus all but load instructions retire in the write-back
stage and load instructions retire in the load write-back stage. This has an
important effect when using an emulator for simulator verification. Please
refer to Section 4.1.5 for details.

Internally the PowerPC 405 core architecture is big endian but it sup-
ports both little endian and big endian data format. This further increases
compatibility with other hardware blocks being placed on the same chip
or externally. In order to provide this feature the instruction set contains
reverse order load/store instructions. In addition the instruction cache rear-
ranges instructions stored in little endian format before storing them in the
cache array.

The instruction cache is read only. It is connected by an unidirectional
eight byte bus to the fetcher. The data cache is connected to the execute
unit using a bidirectional eight byte bus. The bus allows the cache to simul-
taneously accept a new request and answer an outstanding one. The widths
of the buses allow for fetching two instructions at a time and writing and
reading two registers at a time for certain multiple load/store instructions.

35

Both caches are two-way-associative with a line width of 32 bytes. The total
number of cache lines depends on the size of the cache!®. Since the caches
are independent they can be of different size. Both caches have 32 byte line
fill buffers. These buffers allow for further cache requests to be served if they
are cache hits during an on-going line fill. For non-cacheable line accesses
both caches utilize the line fill buffer even thought the line is not going to
be written into the cache array. The data read stays in the buffers until it
is overwritten by a subsequent memory request. This way subsequent non-
cacheable request can be served a lot faster since they do not need to load
the corresponding line multiple times.

In addition the the properties mentioned above the data cache contains
a two line flush queue and a flush buffer. Data lines to be flushed are first
placed in the flush queue and then moved into the flush buffer. From there
they are written to the memory. This way a single ongoing flush does not
block the data cache pipeline. The data cache supports both the write-
through and the write-back strategies.

To control the behavior of the caches special purpose registers are be-
ing used by the PowerPC 405. These 32 bit registers are the Data Cache
Write-through Register, the Data Cache Cachability Register, the Instruction
Cache Cachability Register, and the Storage Little-Endian Register. When
the PowerPC 405 operates in real mode each bit of these registers controls
one 128 MB region of the 4 GB address space. Bit 0 sets the properties for
the lowest-order region and ascending bits control ascending memory regions.

The caches are supposed to be connected to an 8 byte wide system bus.
This is rather unusual since most processors have buses that support a cache
line read in on access [12].

4.1.3 Instruction Set Architecture

The ISA of the PowerPC 405 is actually the PowerPC ISA with a small set
of new instructions. These new instruction can be seen in table 2. They
are very implementation specific and a big part of them needed not to be
implemented in the module since they are for operating system use only. The
module I wrote does decode all PowerPC 405 instructions correctly. Thus
instructions whose functionality I have not implemented are skipped and

simulation continues. This allows future users to faster add the functionality
if desired.

4.1.4 Implementation

The PowerPC 405 module is implemented with two port groups to the out-
side. One is for instruction cache memory accesses (read-only). The other

10Commercially available sizes are (per cache): 0 KB (no cache), 4 KB (64 lines), 8 KB
(128 lines), 16 KB (256 lines), 32 KB (256 lines), and 64 KB (512 lines) [18].

36

Name

Description

Cache invalidation
and debug instruc-
tions

These instructions serve to invalidate the whole
cache on power up and to debug programs. They
are for operating system use and thus not imple-
mented in the module.

MAC instructions

The MAC instructions are used for fast multipli-
cations and access the additional MAC unit of the
PowerPC 405 core. They are implemented in the
module.

TLB instructions

These instructions are used for the management
of the translation lookaside buffers (TLB). Since
the MMU is not implemented in the module these
instructions are ignored.

Data control regis-
ter read/write in-
structions

The data control registers (DCR) serve for inter-
facing external components in embedded systems.
These instructions are ignored in the implemented
module.

External and crit-
ical Interrupt con-
trol instructions

These instruction serve to enable and disable ex-
ternal interrupts and to return from critical in-
terrupt handling routines. They are for operating
system use only and thus not implemented in the
module.

Table 2: Implementation-specific instructions of the PowerPC 405 compared

to the standard PowerPC ISA.

PowerPC 405 SystemC module

..........

E fetch unit

treates load / store
instructions seperatly

pipeline c++ class

| uses library genereated
by GenlISSLib to:

interfaces with outside
during system calls

; : ; :
(_é_s_) Instruction 4_5—_5_) handle instruction ._E_I_
' H Cache H fetches and queueing H decode instructions
- ©)
E SystemC [|
7 T . A
VOPOMS b eeeeeeees i execute unit o
H E H H : execute instructions /
H E handles [— . H) compute effective address
E H instruction 1 Register .. H for memory accesses
(.I_s) Data timing ! File ! :
' H H
'

Figure 11: The internal structure of the PowerPC 405 module.

37

is used by the data cache for memory read and write accesses. The module
is implemented in SystemC. This allowed me to use GenISSLib [4] for the
creation of the ISA interface. GenISSLib takes input files similar to VHDL
that can contain C++ code to be executed for each instruction. In addition a
CPU model has to be defined on which the instructions operate. GenISSLib
is ideal for creating emulators!'. But with only small changes to the ISA
description files used as its input the resulting library is suitable for decod-
ing all instructions for the simulator. GenISSLib is perfectly suited for this
task since it lets the user define what information to extract from the binary
instructions and how to present it. Also, when decoding, libraries generated
with GenISSLib use a hash based on the instruction address. This creates
an enormous speedup for instructions in a loop for example. The possible
drawback is, that it assumes constant instruction memory. Should this not
be the case it is of course possible to turn off the hashing.

GenlSSLib can also even handle the execution of simple instructions,
like arithmetic ones. In fact, since I wanted the best possible speed I have
decided to leave the biggest possible part of the internal execution to the
emulator library generated by GenISSLib. This led to an internal structure
of my module as depicted in figure 11. The state of the processor is in
fact mainly kept in the emulator, namely the register file, status registers
and the instruction counter. The emulator is encapsulated by a C++ class
called pipeline that maintains the state of the fetch unit and the execute
unit. The fetch unit simulates the branch prediction and the instruction
prefetching. The execute unit is responsible for filtering out instructions
that cannot be correctly simulated by the emulator alone. These are load and
store instructions as well as system calls. In fact system calls are executed
by the emulator. But they need special attention regarding memory access.
For this each component that implements some part of the memory needs a
backdoor for read and write operations. This includes as well the memory
module as the caches.

There is also a special case regarding system calls, namely when a second
emulator is run in parallel for verification of the simulator. In this case the
execute unit has to make sure that only the emulator actually executes the
system call. After that the result needs to be copied into simulation memory
and caches.

When handling load and store instruction the GenISSLib library used
for the simulator does actually nothing except for decoding the instruction
and calculating the effective address. The execute unit finally simulates
the memory access which is done internal (in the PowerPC 405 module) to
the data cache.

The instruction cache and the data cache are both implemented in the
outermost part, the SystemC module-class definition. Both offer access

1n fact this is how I generated the emulator used for verification (see Section 4.1.5).

38

methods to the pipeline class. This way they can be easily shut out by
simply changing the code in these methods. These methods enqueue the
new requests if possible and signal this to the pipeline. At the beginning of
each cycle methods are called that treat the dataflow of the cache pipelines
and do the necessary port communication with the outside buses.

In the case of an exception the simulation will simply stop.

4.1.5 Verification with an emulator

DIRECTION OF COMPUTATION

INSTRUCTION ARRIVES ' : :
FROM INST. CACHE > DE 'EX 'WB
H H H

H
SIMULATOR DECODES &
INSTRUCTION '

VERIFICATION
SIMULATOR EXECUTES
INSTRUCTION

'
EMULATOR EXECUTES INSTRUCTION USING:
DECODE INFORMATION FROM SIMULATOR i

Figure 12: The pipeline compution process of the PowerPC 405 module.

As already mentioned the simulator can be run in parallel with an em-
ulator. In fact, when instantiating the simulator module a pointer to an
emulator and an emulator CPU instance (to guard the state of the emulator
CPU) can be passed. This way, if I simulate a shared-memory model with
multiple processors, I simply create one emulator with the desired number of
processors. Then I pass the pointer to the same emulator to each processor
simulation module and a pointer to its corresponding emulation CPU.

The emulation feature of course slows down overall performance when
used. But there are two reasons for its use. First of all, it serves to verify
the simulator correctness. When a new module is branched to the processor
the emulator can be used to see if everything works as it is supposed to do.
When changing the used memory module for example I was able to check that
my program still behaved correct by running the emulator in parallel. But
mainly the emulator becomes irreplaceable when debugging. When using
the emulator the simulator will stop on the first caught '? occurrence of a

121 some cases the result of instructions cannot be compared directly and the difference
in results will be noticed in the next instruction. This special case occurs in combination
with load instructions. For details please continue reading Section 4.1.5.

39

difference between simulator processor state and emulator processor state.
It dumps information that is crucial in debugging, namely when and where
the difference was found and what the processor state is (register file and
pipeline).

Verification is done when instructions commit in the write-back stage of
the pipeline, i.e. when the result of an operation is written into the register
file. Following this the same instruction is executed in the emulator. After-
wards the register files and the PCs of simulator and emulator are compared.
Unfortunately when a load instruction is waiting in the load write-back stage
such a comparison is not possible. This is due to the fact, that newer in-
structions might retire that are independent of the load instruction waiting
for its result. Thus in this special case the simulator processor behaves not
completely in order and its state differs from that of the emulator processor
who executes all instructions atomic and in order. Due to this constraint
verification takes only place for cycles in which an instruction retires in the
write-back stage and the load write-back stage contains no waiting load in-
struction. Independent of this every instruction that passes through the
write-back stage is executed in the emulator, even load instructions.

4.2 The Network on Chip module

I will start by describing the structure of the network I implemented and how
I tried to make it as adjustable as possible. After that I will speak about
the actual implementation which focuses also on simulation speed.

4.2.1 Architecture

As described in section 3 I have tried to implement a NoC module that was
generic enough to allow for the simulation of various kinds of packet-switched
interconnection networks. SPIN served me as a model since it was the most
versatile network of all those mentioned in section 3. But the module I have
implemented is not a clone of SPIN. It can be configured to model SPIN but
it can in general model any topology and allows for far bigger flexibility than
SPIN does with its modules. With only little extensions the NoC module
can be also turned into the EIB of the Cell Processor or a dynamic network
as used in the RAW Microprocessor. In theory it can be also transformed
to model the static network of the RAW Microprocessor. But since this
network is programable and its routers fetch instructions from memory this
would require larger changes to the module.

In order to allow for high flexibility I have made the following design
decisions for the NoC module:

e The connection links are unidirectional. In order to simulate a bidi-
rectional link simply two unidirectional links are used. This way the

40

user can implement more network topologies. It allows for example to
implement the network rings used in the EIB of the Cell Processor.

e Routers can contain any number of incoming and outgoing links and al-
most arbitrary routing rules can be defined. This way the user can im-
plement different topologies and different arbitration techniques. Also
he should be able to change the router to implement packet-switching
instead of worm-hole routing by applying only small changes.

e There are wrappers that serve in the same way SPIN wrappers served.

e The network should be implemented in a way that it runs as fast as
possible.

These decision are quite general and were confined a little more during
implementation.

4.2.2 Implementation

First of all it needs to be said that I have implement one big SystemC module
that hides the whole network inside. The alternative would be to implement
every part of the network as a separate SystemC module. The advantage
would be that the user is already familiar with SystemC and could easily use
the modules or even add new ones if needed. Unfortunately the SystemC
overhead due to module communication would ruin simulation speed since
there would be simply to many modules. Alone in the Simple fat-tree network
modeled by SPIN (figure 8) there are 32 full duplex links and eight routers,
a total of at least 40 components that would have to be connected. The
number of SystemC ports to connect those would be still higher. This is
why I have implemented the network topology as simple C++ structs that
hold the state of all components. In addition the NoC module contains code
that changes the state of these components accordingly to what happens on
the SystemC ports that connect the NoC module with the clients. This code
is split into three parts so that changes can be easily applied. Each part is
responsible for one type of internal components. As decided above they are:
a wrapper, a router, and a link. Each component can be instantiated inside
the NoC module as many times a needed.

For a quick overview of the role and parameters of each component please
refer to Table 3.

The NoC module is connected with other modules through an adjustable
number of SystemC ports. The treatment of the dataflow on these ports is
left to the code responsible for the wrappers. Each wrapper is assigned to
one group of inports and one group of outports. In the current implementa-
tion these port groups allow for address space requests. This behavior can
be changed by altering the part of the code that manipulates the wrapper

41

Name Description Parameters

Link Unidirectional pipelined connection. number of pipeline
stages, cycles per
pipeline stage

Switch Routes incoming flits or packets to outgo- | number of connec-
ing links according to internal route-table. | tions, route-table,
Buffers data when desired. buffer sizes

Wrapper | Manages the data transfer between the | buffer sizes
SystemC ports and the internal network
links. Buffers data when desired. De-
signed to be completely reprogrammed to
suit needs.

Table 3: The three internal construction elements of the NoC module.

state. The wrapper is also responsible for internal buffering of incoming and
outgoing messages and requests. Each wrapper is internally connected to
two links: one to send data into the network, one to receive data from the
network.

The simplest structure implemented in the NoC module are the links.
Links represent pipelined unidirectional wires that serve to transport flits
across the chip. Each link is represented by an array that contains an entry
for each of the pipeline stages of the link. The data width of the links is
parametrized on instantiation by assigning it one of the integer datatypes
uint8_t through uint64_t. Since hardware implementations with higher
data widths than 64 bits are strongly unrealistic for a NoC due to area
consumption I felt that the implemented possibilities are sufficient. Using
integers to hold the data instead of further arrays also speeds up the com-
putation. In addition the data values in each pipeline stage can be marked
valid or invalid by a boolean flag. Instead of defining array cell number 0
as pipeline stage 0 and moving data from one stage to another, there is an
additional integer per link that points to the array cell representing the first
pipeline stage of the link. When the data is supposed to advance one pipeline
stage really only the pointer to the first stage changes. The disadvantage of
this is that the link can be stalled only as a whole, not in separate stages.
But this actually represents most hardware implementations. Also again I
save a lot of computation time.

The switches are a little more complicated. Each switch can contain an
arbitrary number of incoming and outgoing links. Incoming links contain
at least one buffer to read in the incoming data. Additional buffers can
be easily added to the code. The routing is actually done using a routing
table that has to be defined during initialization of the simulation. For each
possible destination address the routing table contains an arbitrary number

42

of pointers to outgoing links that can be used for this address. They are
checked in that order, i.e. when the first link pointed to is occupied already
by a different connection the next one is examined. If all possible outgoing
links are occupied than the flit stays in the buffer and the incoming link
is stalled for the next cycle. Right now the switches implement wormhole
routing, so the route table is only examined on the arrival of a header flit
and an connection is made between the corresponding in link and out link
lasting for as many flits as are designated in the header flit. Nevertheless
the switches can be easily changed to implement a different type of packet
treatment than wormhole routing since the code is very structured and only
small portions need to be changed. The solution with the routing tables
allows for very flexible configuration possibilities.

The only network module parameter that cannot be changed at runtime
is its number of SystemC ports. Otherwise it can be completely reconfigured
during simulation if this should be desired. Parameters such as the number
of switches or links, as well as their details like buffer sizes or pipe stages
can be adjusted on the fly. In order to initialize the network there are
several topology methods that initiate the arrays containing the component
structs and basic parameters. These topology methods can be called by the
user after the NoC module has been instantiated in order to configure it to
simulate a chosen topology. Current implemented topologies include but are
not limited to: a unidirectional as well as a bidirectional torus, the fat-tree
topology of the SPIN network, or a binary tree topology. If a desired network
topology is not supported the user can simply add his own.

4.2.3 Possible improvements

In order to further facilitate the configuration and adaption of the NoC
module to the users purposes it would be of use to make it far more templated
than it already is. Right now code needs to be changed inside the module for
certain changes in behavior. Mixins [33] seem to be a promising solution to
this problem, since they allow to specify a superclass containing code during
module instantiation. It would help the user of the module enormously if
he could define the behavior of wrappers by "passing code as an argument"
during instantiation instead of changing it inside the C++ class. This is
exactly what mixins would provide.

4.3 The memory module

Implementing the memory module was rather a simple task. I have used an
C-++ class called MemoryContainer as the foundation. It was written some
time ago by Daniel Gracia Pérez. Externally the component represents a
huge memory that can be written to and read from by two interfacing meth-
ods. Its theoretical size is defined by the type of the address passing variable

43

that is templated inside the module. For a 32bit unsigned integer (uint32_t)
as used by my PowerPC 405 module this module allows for 4 GB of stor-
age if enough memory is provided by the system on witch the simulation
runs. Internally the MemoryContainer class splits the storage space into
pages that are allocated from main memory only when written to or read
from. They are organized as concatenated lists in a hash table. Compared
to an array based solutions this keep the memory consumption very low,
since only really used memory has to be allocated. Nevertheless an adequate
speed is guaranteed due to the organization in a hash table. Another ad-
vantage when compared to an array based solution is, that the module does
not have to know beforehand on which address space the software running
on the simulated processors is going to operate.

The SystemC memory module I wrote simply wraps around the Mem-
oryContainer by introducing different access latencies for write and read
operations and offering an adjustable number of ports. Special write and
read methods are offered for simulator bypass in the case of system calls.
For details regarding this behavior please refer to section 4.1.4.

With the memory module and the PowerPC 405 module alone a working
simulator can already be constructed. Figure 13 shows an implementation
containing four CPUs and an eight port memory. In order to be more realistic
the memory should be customized to contain an arbitration between those
ports. For example a round-robin implementation can be implemented that
allows one port at a time to access the memory. This is equivalent to a
shared bus solution.

5 Communication between different simulation en-
vironments

As mentioned in the introduction the second goal of this internship was
the investigation of interfacing methods with other simulation environments.
This is an important issue in order to futher facilitate reuse of the library
components proposed. But the motivation for this research comes not only
from this project. The simulation research community in general has ex-
pressed the wish for easy reuse of components across simulation environments
[38, 5]. So far reuse has been limited since in order to use a component from
one simulation environment in another a great part of it has to be rewritten.
This is coupled with an enormous overhead in work for each component.
Because of this overhead reuse based on recoding is impractical. Thus dif-
ferent solutions needed to be found. In this section I am going to present
the two possible solutions I have studied. Both I have successfully used to
connect SystemC modules with Liberty modules since these were the two
environments I worked with.

The first one is the introducing of a common communication channel be-

44

tween the two simulation environments. In this case simulators from both en-
vironments run in parallel and exchange information in-between each other.
This communication channel can be either made available by the simulation
environments themselves or by newly introduced special modules. The first
solution implies changes to both simulation engines. Since these engines are
tweaked to reach a maximum possible performance it is not a good idea to
temper with them. In addition changing the behavior of a simulation engine
like in the case of LSE is more than just a simple hack. On the contrary
introducing a new module encapsulates the whole communication mecha-
nism. The communication module can be used when needed and only then
impacts simulation performance. I have implemented two such modules, one
for SystemC and one for Liberty. This modules are described in section 5.1.

The other solution I have investigated is the introduction of wrappers.
A wrapper is a module written in one simulation environment that wraps
around a module from another simulation environment. The wrapper inter-
faces the input and output ports of the wrapped module and makes them
available to other modules from its own simulation environment. It achieves
this by providing the same input and output ports as the wrapped module
and copying data between both. A schematic wrapper can be seen in figure
14. In order to be able to make a module from another simulation environ-
ment work a wrapper often has to run the corresponding simulation engine.
This behavior is also depicted in figure 14. Another wrapper technique is
to have a parental simulation environment wrap around the two simulation

PPC405 PPC405 PPC405 PPC405
module module module module
I-Cache E D-Cache I-Cache E D-Cache I-Cache E D-Cache I-Cache E D-Cache
L1 L1 L1 L1 [
A A A A A A A A
Y Y Y Y Y Y Y Y

8 Port Memory module

Figure 13: A possible configuration of the memory module and four PowerPC
modules to form a working simulator. The gray boxes represent the port
groups responsible for memory accesses on each module. This is a shared
memory, shared bus implementation. The bus is actually simulated within
the memory module by arbiting the ports to allow only one access at a time.

45

environments to be interfaced. In fact this solution has been proposed by
the both, the Alchemy and the Liberty research groups. Both are currently
working together on a LSS!3 based wrapper for SystemC and Liberty, i.e. a
solution that allows to use SystemC modules together with Liberty modules.
I have so far tested this wrapper and am going to further work on it within
the next weeks. A short description is given in section 5.2.

simulation engine B wrapper from
simulation environment B

simulation engine A

module from :| |: |: module from

module from
simulation
environment B

simulation simulation
environment B environment A

Figure 14: Schematic of a wrapper.

5.1 A common communication channel

In order to make two modules from different simulation environments com-
municate a connection channel between both needs to be established. The
most rapid solution would be to have interfacing methods or even a system of
shared memory. But this solution necessitates that both modules are created
from the same parent process and thus that both simulation environments
already have a way of communicating. This is a contradiction to the reason
why I wanted to use special modules, namely in order to not have to change
the simulation engines.

5.1.1 Socket-based communication

My solution is quite different. I have used sockets provided by the operating
system to make two or more modules communicate with each other. The
idea for this arose when I was designing the network on chip module (see
section 4.2). In this module an actual network was modeled. The concept
is to extend this modeled network onto the actual network provided by the
operating system in order to make communication with other simulators
possible. A virtue of this solution is that it allows to spread the compution of

13Liberty Structural Specification language

46

a simulation on multiple machines. This approach is described more detailed
further down in this section.

The downside of the socket based solution is that it introduces additional
latency into the computation process of the simulation. Simulation data ex-
changed between the modules is strictly timed. Thus the receiving module
has to wait until the requested data arrives before it can continue the simu-
lation. If such data exchange takes place multiple times during a simulated
clock cycle then the simulation speed will become too slow. Thus, a use of
sockets in the scope of simulation needs to be well planed in order to achieve
any gain.

To keep latency as low as possible a module should thus send data only
once in a simulation cycle (not a delta cycle!). This is exactly what happens
in the NoC module. Data is moved exactly once at the beginning of a new
simulation cycle. I decided to exploit this behavior by allowing the user
to split the simulated network and connect it with sockets. To do so I
have introduced a forth component inside the network on chip module and
named it socket-port. The socket-port can be connected with links to other
components. This happens in the same way as links are used to connect two
switches or a switch and a port. The socket-port has an adjustable number of
incoming and outgoing links. Thus the user can arbitrarily cut the network
represented by a network on chip module by splitting the links. An example
of this is given in figure 15. A NoC module can now be connected to any
other NoC module whether written in SystemC or Liberty.

The socket-port allows also for the distribution of the simulation over
multiple machines. Already at the beginning of this project I have had the
idea to spread the simulation over multiple workstations to allow for faster

SystemC & SystemC SystemC SystemC
Ports H Ports Ports Ports

| Wrapper | | Wrapper | Wrapper Wrapper

Router Links Router

Tt = 1

Router Links.

Router Links Links Router

Socket Socket

1 I e It

Router Links Links Router

| Wrapper | | Wrapper | Wrapper Wrapper

SystemC + SystemC SystemC SystemC
Ports H Ports Ports Ports

Figure 15: The network to the left (NoC module 3) is equivalent to that on
the right (Noc modules 1 & 2) when simulated. The computation of NoC
modules 1 & 2 and the components connected to each can be spread over
two different workstations.

Router

w ®m—cao3 0Nnoz

- o-cao3 0oz

N ®—cao3 0oz

47

simulation speeds. This has been also proposed by other researchers [45].
Unfortunately SystemC and Liberty, as well as SimpleScalar for that part,
do not provide any way of mapping the hardware description to different
workstations. When developing and later coding the NoC module which is
heavily packet-oriented I came up with the idea to not only use the operating
system sockets to simply communicate between two modules on one machine
but to route these packets in-between different workstations. In fact my idea
was to run the computions for a few processors on each workstation and have
the local part of the NoC implemented on each workstation. The connections
in-between these workstations could than be mapped to tcp. Figure 16 shows
how the NoC modules and the server can be used to distribute computation
on multiple machines and at the same time interface SystemC with Liberty.

workstation 3 workstation 4

[Emm
[Emm

il workstation 1

Ket
socke! socket Liberty

SystemC
further Pars corinestion C server connection Ports further

SystemC Liberty

Systemc <:> <:> Liberty
modules <:> NoC module NoC module \4/‘:> modules

SystemC socket socket Liberty
further Ports connection connection Ports further

SysetmC <:> <:> Liberty i
SystemC Liberty
modules <:> NoC module NoC module <:> modules
routes data
inbetween modules =|
il workstation 2 workstation 5 IIT-m

Figure 16: Distribution of computation on different machines with using
NoC modules and a server written in c.

5.1.2 Implementation

Internally the socketport works similar to a switch. During initialization of
the NoC module a socketport will connect to a server using a system socket.
I have used a server instead of connecting directly with the Liberty module
since it helped debugging. The server can log the data that passes and allows
further control over it. The final product should use the server only in the
beginning to create peer-to-peer links and later send the data directly to its
destination module. Each socketport identifies itself by a small header during
connection and it is the servers responsibility to route the data correctly in-
between the socketports. For that the network topology has to be known
beforehand and programmed into the server, a task that takes only a few
minutes for a simple network as I found.

In order to minimize network traffic I have coded the socketports such
that they only send the data that really arrives on the links. For this a
header word is used as a 32 bit vector. Each bit describes whether or not

48

data was actually sent for the corresponding link. If more than 32 links are
used the header word can be expanded to 64 bits. This allows to connect
64 outgoing and 64 incoming links on each socket. Futher expansion is not
foreseen since already connecting 64 links over a socket will generate up to
264 bytes of traffic in one direction per cycle. Supposing a (slow) simulation
speed of 10.000 cycles per second and bidirectional link connections this will
generate about 5 MB/sec of traffic.

5.1.3 Performance

When testing'* the new module I found that simulation performance on one
system sinks by at least 20% when using the socketport module. This is due
to the latency of the sockets. Also in order to maintain a synchronous and
cycle correct simulation the socketports have to wait each cycle for the server
to tell them if data will or will not be available on each link connected to
them. This process blocks the simulation and introduces further speed loss.
Thus for connecting two simulation environments on one computer sockets
are not the ideal solution. Wrappers as presented in section 5.2 seem to have
a brighter future for this particular task.

There is another problem presented by the socket based solution. As
described in section 4.1.4 I have used an emulator to execute system calls
that needed direct access to the memory simulated. The solution I have
implemented does not yet support this. Since I have used a shared memory
model when simulating the distribution of simulated processors on multiple
machines was not possible. In order to be able to do so a second communi-
cation channel needs to be introduced that serves for direct atomic memory
accesses. This is possible but needs to be implemented yet, for example in
the form of a second server. Meanwhile a solution could be to have each
processor have a local memory and let system calls access only this mem-
ory. The processors could communicate via message passing and thus no
further atomic accesses would be necessary across socket-boundaries. I am
still working on an simulator implementation that allows to do this.

I hope to be able to examine this behavior further during the last weeks
of my internship. Although sockets have proven to be of little use as a con-
nection between simulation environments they might still stand the challenge
as a tool to spread simulation over multiple workstations and thus increase
overall performance. Once I have finished the above mentioned simulator,
speed measurements should lead to a final decision regarding the socket issue.

5.2 An LSS wrapper

The general idea of the wrapper has been already described above. Since
it is far from ready yet I will just give a short description of the current

!4 Please see section 6.2 for details on testing and simulation.

49

implementation. In fact we have been able to simulate the LFSR from section
2 using a xor-gate module written in SystemC as well as a flip-flop module
and a tee module taken from Liberty’s corelib.

The idea behind wrapping a SystemC module is the following. The Lib-
erty Structural Specification (LSS) language is used to describe the general
structure of the LFSR. Even when only using corelib modules the LSS files
serve only as the structural specification. This means that the placement of
each module and the interconnections with other modules are all described
using LSS. When the LSS engine is run it generates code according to the
specifications inside the LSS input files. For the LSS engine it does not mat-
ter wheather the module it wraps into the final source files is from Liberty,
SystemC, MicroLib or just written in standard C—++. This is exactly what
we do in order to connect our System(C xor-gate with the other modules
taken from Liberty’s corelib. Each module gets is own LSS file describing
what connections it will have and how it is generated inside the wrapper.
The tee and the delay modules LSS files will result in the generation of LSE
API calls. The xor-gate LSS file in turn will generate code that runs the
SytemC engine when compiled and instanciates the SystemC xor-gate inside
it. To facilitate this it encapsulates a special LSS file called microlib that
automates the wrapping code generation. The xor-gate LSS module needs
only to set special parameters of the microlib LSS module and the rest is
done by this module.

In fact the microlib module uses the parameters set by its parent to
specify a the detailed code structure that executes the SystemC environment
with the SystemC module that is being encapsulated. Additional code is
being generated by the LSS engine when processing the microlib module
that connects SystemC signals to the ports. Further code generated reads
and writes these signals to interface the SystemC module.

In general this is what LSS was made for from the beginning. It is a
structural specification language: it defines the structure of the LFSR. In
addition it defines the structure of each module and what simulation engine
is going to be used for that module. In particular in our example we have
defined that Liberty’s engine should be used for the delay and the tee mod-
ules. For the xor-gate we have defined that SystemC should be used. When
the LSS engine processes this specification it will generate the appropriate
code by following the LSS file guidelines. After further processing by Liberty
and finally the compilation with gcc, the simulator can be run.

As an example of how the microlib module works internally this is the
part of the code:

for (i = 0; i < inputs.size; i++) {

copy_inputs += <<< *signal_${inputs[i]}_${localname} =

50

*${inputs[il}_data[0];>>>;

check_inputs_known +=
<<<LSE_signal_data_known(${inputs[i]}_status[0]) && >>>;
check_inputs_present +=
<<<LSE_signal_data_present (${inputs[i]}_status[0]) && >>>;

This is the code that creates the Liberty c¢ code that is responsible for
sending data towards the SystemC module. The variables used are as fol-
lows: inputs is an array with the names of the SystemC ports to interface.
A unique identifier is represented by localname. While localname is deter-
mined automatically inputs is set by the parent module. In the LFSR case
this would be the xor-gate module.

The code is encapsulated in a loop over all the inputs set. The code
generate in the line that starts with copy_inputs is actually responsible
for copying the data send on the LSS ports towards the SystemC signals.
copy_inputs itself only holds the ¢ code to be executed when necessary.
There is another LSS userpoint defined that contains this code:

if (${check_inputs_known} !${cycle_finished}) {
if (${check_inputs_present} 1) {
/* copy input values */
${copy_inputs}

Here the two other variables defined are first used to check if data is
actually available on the incoming LSS ports of the microlib module. If so
the code contained in copy_inputs is called.

The other way round works similar. In fact there is code generated for
every task necessary: the initialization of the SystemC environment, the
execution of each cycle, and as demonstrated the writting and reading of
the ports. The usefulness of this module will be enormous once it is ready.
Right now there are still things that it fails to achieve: It is not possible to
connect arrays of port for example. Further no parameters can be passed
to the SystemC module except for template parameters. The possibility to
add user defined code is a must in order to allow for a better flexibility. Also
there should be interfacing methods introduced that allow for example for
bypass accesses to memory as in the case of system calls on a processor.
These issues we will be working on in the upcoming weeks in cooperation
with the Liberty Research Group.

51

6 Simulation

In this section I will describe some simulators I have build using the con-
structed modules. For each simulator constructed I will give some perfor-
mance data. The configuration of the machines I used to run simulations is
given in table 4.

Parameter Value

CPU type Intel Xeon CPU 2.80 GHz
CPUs 2

Level 1 Cache 512 KB

Memory 2.5 GB

Operating system | Linux version 2.6.8.1-24mdksmp
Bogomips 5505.02

Table 4: Configuration of the workstations on which simulations were run.

6.1 A 16 core network on chip simulator

4 port Memory
NoC

module """"" l """"""""" | """"""""" | """"""""" |

v
Inst } Data

= MM I

one of the 16 cores connected‘\

Figure 17: The network structure for the shared bus simulator.

This simulator implements a simple tree topology as shown in Figure 17.
16 CPUs are plugged into the network and connected to a shared 4 port
memory. Each CPU is assigned a rank ranging from 1 to 16. The CPU with
rank 1 is the (master), all other CPUs are slaves. To allow for each CPU to
find out it’s rank local memory address 0200000000 was set to read only and
its value contained the rank number for each CPU. This was hardcoded into
the memory module with one simple line of ¢ code. This same program was
launched on each CPU and different behavior depended only on the rank
of each CPU and resulting branching within the code. The simulator stops
when any of the processors make an exit system call.

52

The program used is a simple one: the master CPU prints a hello message
and signals slave number one. After that the master waits to be signaled.
All slaves wait to be signaled and when so, print their hello message and
signal the next slave. The last slave signals the master once he is done
and the master exists program execution. The program code can be seen in
Appendix B. When executed the simulator presents this output:

Network On Chip: Building fat tree network topology
for 4 memory ports and 16 CPUs.

Initializing SystemC

KoKk okok ok ko K Kok ok ok o

MASTER: I’m the master CPU!

SLAVE(2): Hello World!

SLAVE(3): Hello World!

SLAVE(4) : Hello World!

SLAVE(5) : Hello World!

SLAVE(6) : Hello World!

SLAVE(7) : Hello World!

SLAVE(8) : Hello World!

SLAVE(9) : Hello World!

SLAVE(10): Hello World!

SLAVE(11): Hello World!

SLAVE(12): Hello World!

SLAVE(13): Hello World!

SLAVE(14): Hello World!

SLAVE(15): Hello World!

SLAVE(16): Hello World!

MASTER: That’s all, folks!

PowerPC 405 CPU (#0) halted.

sim_total_time 8 # seconds

sim_cycle 217590 # clock cycles

sim_cycle_rate 26215.7 # cycles/sec

PowerPC 405 CPU (#0): Instructions Executed: 24651 #

PowerPC 405 CPU (#1): Instructions Executed: 163168

PowerPC 405 CPU (#2): Instructions Executed: 154342

PowerPC 405 CPU (#3): Instructions Executed: 146627

PowerPC 405 CPU (#4): Instructions Executed: 137975

PowerPC 405 CPU (#5): Instructions Executed: 130132

PowerPC 405 CPU (#6): Instructions Executed: 121917

PowerPC 405 CPU (#7): Instructions Executed: 112983

PowerPC 405 CPU (#8): Instructions Executed: 104608

PowerPC 405 CPU (#9): Instructions Executed: 95849 #

PowerPC 405 CPU (#10): Instructions Executed: 87138 #

PowerPC 405 CPU (#11): Instructions Executed: 78039 #

H OH OH H H H HEH

53

PowerPC 405 CPU (#12): Instructions Executed: 69460 #
PowerPC 405 CPU (#13): Instructions Executed: 60481 #
PowerPC 405 CPU (#14): Instructions Executed: 51714 #
PowerPC 405 CPU (#15): Instructions Executed: 43191 #

As expected the CPUs have printed their messages in the order of their
rank. Following that the master CPU has halted (PowerPC 405 CPU (#0)
halted.) and simulation a stopped. The simulator prints the time in seconds
it took for the simulation to exit, the number of clock cycles simulated, and
the simulation speed in simulated cycles per second. The average of ten
successive measurements on my test machine was 27031 cycles per second.
Multiplied by the number of CPUs this is an execution speed of 432500 cycles
per second per machine including the otherhead for network and memory.

6.2 Simulation using sockets

As described in section 5.1.3 as of now it is impossible to simulate a shared
memory model with the NoC module across different workstations. I still
needed some type of simulation that would realistically let me evaluate the
socket performance. I have thus taken the simulator from section 6.1 and
made only a small change to the layout from figure 17. I have introduced the
socketport in-between the four top level switches and the memory routing
the eight unidirectional links connecting those two components across the
socketport. The server was configured to just reflect the incoming data.
Thus all memory requests and responses had to pass across the socket. This
was [was able to keep the CPUs and the memory inside one simulator and
thus maintain direct memory access by system calls.

I have measured timing of this simulator in three different setups. In the
first setup the simulator and the server were executed on the same simulation
workstation. This allowed to measure the performance loss due to the use of
the socket API calls. Also the measured results allowed for evaluation of the
sockets as an interfacing method between different simulation environments.
During the second the simulator and the server were running on two different
systems that were both in the same rack. The network optimizations behind
this allow for a ping of 0.05 msec between both machines. This allowed mea-
surement of simulation speeds when using two machines on on rack. Since
this setup is often available in research laboratories its results are of interest.
Finally I executed the simulator and the server on two different machines
connected by a normal ethernet network. Again I measured the simulation
speed in simulated cycles per sec. The ping of the network measured before
the simulations was 0.3 msec on average. This is six times the ping on the
rack machines and allows for evaluation of the socket solution for distribution
over normal networks.

The results of the measurements can be seen in table 5. As can be seen
the simulation on one machine and on two machines from the same rack

54

one machine

two machines
on one rack

two machine
on network

‘ network ping ‘ 0.02 msec ‘ 0.05 msec ‘ 0.3 msec
average 21,453 21,793 11,058
best 24,506 23,740 16,585
worst 17,484 18,977 7,158

Table 5: Measurement results in simulated cycles/sec. For each configuration
10 measurements were made.

yield the same simulation speed. This is surprising at first since the pings
are different but in fact there is a simple explanation. The simulator only
sends and receives messages at the beginning of each simulation cycle and
then computes what actually happens in the cycle. The pings for the first two
simulations are so small that the messages arrive before the next simulation
cycle starts. In fact when an average of around 20,000 cycles per second
is calculated this is exactly one cycle every 0.05 msec. Thus both systems
yield the same result. When compared to the simulation without sockets
this method introduces a performance loss of 21%. This result has already
been interpretted in section 5.1.3.

When running the socket based simulation on two different machines on
a network the situation is far worse. The introduced loss is almost 60%.
This value makes the method completely useless. Thus if the simulation
with sockets has any future then only when run on machines that have a
special network connection like in the case of server racks.

7 Future work

What I have done is implement the basis elements for the library motivated
in the introduction and tested these modules. But the work is far from over.
More researchers will need to contribute to the library in order to make it
versatile enough that it will allow for all possible configurations of CMPs.
New modules need to be developed: new cores and eventually different in-
terconnects. An implementation for message passing with standard libraries
like MPI would also be of use.

Another thing to do is to add operating system support to the PowerPC
405 core I implemented. This means implementing the functionality of not
yet done instructions and adding components such as bios, harddrive and
input/output device simulation modules. Operating system support is useful
in order to for example make measurements with realistic workloads for
multithreaded servers.

The second issue is the discussed wrapper. We will continue to work on

55

it and our hopes are that by the end of the month we will be able to use the
PowerPC 405 core in combination with a Liberty memory module. For this
the emulator interface needs to be added to the wrapper.

In order to distribute the created library needs to be published on Mi-
croLib. This will allow for other researchers to access it and use it in their
designs.

56

8 Personal conclusion

The internship is not over yet so it might seem a little early to draw a
conclusion. But in fact I feel already that I am very satisfied with my choice
and that I like the work here very much. I was able to strengthen the
knowledge in computer architecture that I gained from classes before. The
FPGA course from my first trimester and the connected project have proven
to be of immense value and benefit to my work here. In the FPGA project
we had implemented a MIPS32 including a low resolution graphics card and
programmed it with our own code. I believe the experience from this class
has helped as lot during the internship when looking at other architectures
and considering changes to my simulation layout.

But in the course of this work I was able to learn far more than about
further architectures and optimizations regarding those. Due to the emphasis
on networks on chip I have not only learned about connecting cores on a chip.
I was able to gain a lot of knowledge about networks in general since there
are strong relations between both. Passing information seems to remain a
bottleneck for overall performance in many applications and I feel that it
is crucial to have some fundamental knowledge in this domain. Due to the
large amount of papers I have read I believe that I have understood more
than just the basic principles.

In addition I have acquired new skills in code development and how to
effectively work in a linux environment. While this is not hard to gain it takes
some time and is best done learning from others. Since I have worked with
a lot of code written by other researchers I was able to draw my conclusions
from its performance and learn new tricks.

But I feel that the very most important part for me is that I have worked
for some time in a research group. Due to the intense contact I learned
to work and cooperate with other researchers. Also Seminars and meetings
where we talked about other colleagues’ projects have often sparked my
interest. It was refreshing to talk about ideas with others and listen to their
suggestions. Still I had a lot of chances of making my own design decisions.
I feel that I was able to integrate my ideas well with the team and that I
have profited best possible from these opportunities. I see this internship as
a big success and the the experience gather as something that will help me
in the future.

For quite some time now I have been working and studying towards being
a researcher. This intership has further backed up this decision. In addition
I feel that computer architecture and simulation will stay one of my favorite
research domains.

o7

A FastSysC

FastSysC is also a standard C++ library. It implements a SystemC engine
whose main goal is to allow for a faster simulation speed than the orinial
SystemC engine. To reach this goal FastSysC implements only the subset of
SystemC constructs mentioned in section 2.1. While in SystemC a signal is in
fact implemented by finer grained objects FastSysC implements them as one
class. In order to further improve simulation speed FastSysC allows for only
one clock. In processor simulation this is usually sufficient since processor
circuits on the die are synchronous. Because SystemC was implemented for
hardware system simulation in general it allows for multiple asynchronous
clocks which it needs to manage during simulation. Even when only one clock
is finally used this creates computation overhead. FastSysC is implemented
to use only one clock and thus saves again time.

The possibly most important feature of FastSysC is its possibility to
generate static schedules for the processes in a simulation. This removes the
computation overhead needed to decide during simulation which process has
to be called next (the LIFO queue in SystemC). This is done by letting the
user specify signal dependencies inside a module and combining this with the
knowledge about signal dependencies between modules due to the connection
of ports. Thus in the case of the xor-gate the folowing code would have to be
added to the constructor in order to tell the schedule generator that changes
to the output depend on changes to the input:

res(opl);
res(op2);

The FastSysC schedule generator creates a graph from these dependen-
cies and first checks if it is circular. In this case a static schedule is not
possible. But a circular dependency means that there is an oscillation in the
simulation. Since this should not be the case in processor simulation there
should also be no circular dependencies in the dependency graph for such
simulators. After this check the schedule generator searches for an optimal
schedule. Once found the schedule generator will create a C++ file that
contains a static simulation engine and can be compiled. By this the Sys-
temC engine reaches speedups of up to 3.56 in comparison to the standard
SystemC engine [2].

FastSysC implements the subset of the most important SystemC con-
structs I have mentioned above (Section 2.1). Because of that, all Simula-
tions written in FastSysC can be run in SystemC. The author of FastSysC
has in fact included an extension that is not available in SystemC. This ex-
tension I will describe in the following since I have made broad use of it.
While it is not implemented in the SystemC library it can be easily added
to it. Thus code using the additional constructs described below is still Sys-

58

temC compliant, it just necessitates an extra layer between itself and the
SystemC library.

In SystemC it is possible that a calculation unnecessarily takes place
multiple times. For example the process of a four input and gate module
might be called 4 times during a cycle. Each time it will compute the new
value of the output and write it to the port, eventually causing more processes
to be called multiple times. In some cases this behavior is unwanted. If the
circuit following the and gate is pure combinatorial and we are only interested
in the value at the end of the cycle, than costly simulation time is wasted in
this case. As a solution to this problem FastSysC implements a new type of
ports: sc_in2<type> and sc_out2<type>. The difference to the standard
ports is, that with the enhanced version the user can check if the value of
a certain port is already know for this cycle. To check this, the sc_in2
module provides two methods known() and unknown(). In the beginning
of a clock cycle all inports are set to unknown. When an outport is being
written to, the corresponding inports value is marked as known. With this
technique the above mentioned and gate can simply check if all four value
on the inports are known before computing the result and writting to its
outport. All modules that I have written in SystemC are in fact written for
FastSysC using the sc_in2<type> and sc_out2<type> ports.

59

B A simple test program

#include <stdio.h>
#include <string.h>

// this constant returns the CPU rank
#define cpu_n (*((char*)0x00000000))
#define flag (*((char*)0x00000010))

int main(int argc, char *xargv, char *xenvp)
{
if (cpu_n == 1) {
printf ("MASTER: I’m the master cpu!\n", argc);
flag = 2;

// flush the freshly written data cache entry into memory!
asm("dcbf 0, 0x10");

while (flag !'= 17) {
// invalidate the data cache entry so
// that we do a fresh read from memory!
asm("dcbi 0, 0x10");
}
} else {

// slaves wait until signaled...

while (flag != cpu_n) {
// invalidate the data cache entry
asm("dcbi 0, 0x10");

// ...then print hello message and signal next CPU
printf ("SLAVE(%d): Hello World!\n", cpu_n);
flag = cpu_n + 1;

// flush the freshly written data cache entry into memory!
asm("dcbf 0, 0x10");

// slaves loop forever when domne:

while (1) {}

return O;

60

C A LFSR implementation in SystemC

C.1 xor.h

sc_module XorGate {
sc_in<boolean> opl, op2;
sc_out<boolean> res;

XorGate() {
SC_MODULE() ;
HAS_PROCESS (ComputeResult) ;
sensitive << opl << op2;

}

void ComputeResult() {
res = opl ~ op2;
}
}

C.2 flipflop.h

sc_module FlipFlop {
sc_in_clk clk;
sc_in<boolean> opin;
sc_out<boolean> opout;
boolean tmp;

FlipFlop() {
SC_MODULE() ;
HAS_PROCESS (Dataln);
sensitive << opin;
HAS_PROCESS (NewCycle) ;
sensitive_pos << clk;

void DataIn() {

tmp = opin;

printf("Flipflop %s in: %d", name(), tmp);
}

void NewCycle() {
opout = tmp;
}
}

61

C.3 tee.h

template<int nPorts>;

sc_module Tee {
sc_in<boolean> op;
sc_out<boolean> res[nPorts];

Tee() {
SC_MODULE() ;
HAS_PROCESS (ComputeResult) ;
sensitive << op;

}

void ComputeResult() {

int i;

for (i = 0; i < nPorts; i++)
res[i] = op;

C.4 Ifsr.h

sc_module LSFR {
sc_in_clk clk;

FlipFlop *fpil;
FlipFlop *fp2;
FlipFlop *fp3;
XorGate *xor;
Tee<2> *tee;

LFSRQO {
fpl = new FlipFlop("Flipflop 1");
fp2 = new FlipFlop("Flipflop 2");
fp3 = new FlipFlop("Flipflop 3");

xor = new XorGate("Xor");
tee = new Tee<2>("Tee");

sc_signal<boolean> xor_to_fp1l;
sc_signal<boolean> fpl_to_£fp2;
sc_signal<boolean> fp2_to_tee;
sc_signal<boolean> tee_to_fp3;
sc_signal<boolean> tee_to_xor;

62

sc_signal<boolean> fp3_to_xor;

fpl->clk(clk);
fp2->clk(clk);
fp3->clk(clk);

fpl->opin(xor_to_£fpl);
fpl->opout (fpi_to_fp2);

fp2->opin(fpl_to_£fp2);
fp2->opout (fp2_to_tee);

tee->opin(fp2_to_tee);
tee->opout [0] (tee_to_fp3)
tee->opout [1] (tee_to_xor)

fp3->opin(tee_to_fp3);
fp3->opout (fp3_to_xor) ;

xor->opl(tee_to_xor);
xor->op2(fp3_to_xor) ;
xor->res (xor_to_fpl);

SC_MODULE() ;

virtual "LFSR(Q) {
delete fpil;
delete fp2;
delete £fp3;

delete xor;
delete tee;

C.5 main.cpp

#include <stdlib.h>
#include <systemc.h>
#include <1lfsr.h>

int sc_main(int argc, char *argv[]) {

63

sc_clock clock;
LFSR *1fsr;

duration = 0;

1fsr = new LFSR("LFSRTEST");
1fsr->inClock(clock);

for(i = 1; i < (unsigned long long int)argc; i++) {
if (strcmp(argv([i]l, "-t") == 0) {

if (++i >= (unsigned long long int)argc) break;
duration = atoll(argv([il);

if (duration == 0) duration = 1000;

cerr << "Running simulation during " << duration << " cycles" << endl;
cerr << "Initializing SystemC" << endl;

sc_initialize();

1fsr->Reset();
1fsr->Init();

cerr << "Starting simulation" << endl;
cerr << endl;

sc_start(duration);

cerr << endl;

return O;

64

D A LFSR implementation in LSE

D.1 xor gate.lss

module xor_gate {
using corelib;

inport inO:boolean;
inport inl:boolean;
outport out:boolean;

instance gate:combiner;

gate.inputs={"in0","inl1"};
gate.outputs={"out"};

gate.combine = <<< *out_id=in0_id;
*out_data = (*inO_data) =~ (*inl_data);
*out_status = LSE_signal_something; >>>;

if(in0.width '= inil.width) {
punt (<<<in0.width (${in0.width}) must equal inl.width (${inl.widthl}).>>>);
}

if (in0.width != out.width) {
punt (<<<inO.width (${in.width}) must equal out.width (${out.width}).>>>);
}

LSS_connect_bus(in0,gate.in0,in0.width) ;
LSS_connect_bus(inl,gate.inl,inl.width);
LSS_connect_bus(gate.out,out,out.width) ;

};

D.2 Ifsr.lss

using corelib;
include "xor_gate.lss";

instance bit0O : delay;
instance bitl : delay;
instance bit2 : delay;
instance xor : xor_gate;
instance bitl_tee : tee;

65

bit0.initial_state = <<< #init_id = LSE_dynid_create();
*init_value = TRUE;
return TRUE; >>>;

<<< *init_id = LSE_dynid_create();
*init_value = TRUE;
return TRUE; >>>;

<<< #*init_id = LSE_dynid_create();
*init_value = TRUE;
return TRUE; >>>;

bitl.initial_state

bit2.initial_state

bit2.out -> bitl.in;
bitl.out -> bitl_tee.in;
bitl_tee.out[0] -> xor.in0;
bitl_tee.out[1] -> bitO.in;
bit0.out -> xor.inl;
xor.out -> bit2.in;

bit2.in.control = <<< return LSE_signal_extract_data(istatus) |
LSE_signal_extract_enable(istatus) |
LSE_signal_ack; >>>;

collector STORED_DATA on "bit2" {
decl=<<<
#include <stdio.h>
>>>;
record=<<<
printf(LSE_time_print_args(LSE_time_now));
printf(": bit2=%d\n", *datap);

>>>,

};

collector STORED_DATA on "biti" {
decl=<<<

#include <stdio.h>
>>>;

2

record=<<<
printf (LSE_time_print_args(LSE_time_now));
printf(": bitl=%d\n", *datap);
>>>;
};

66

collector STORED_DATA on "bitO" {
decl=<<<
#include <stdio.h>
>>>;
record=<<<
printf (LSE_time_print_args(LSE_time_now));
printf(": bit0=%d\n", *datap);
>>>;
};

67

References

[1] OSCI, SystemC, http://www.systemc.org, 2000-2005.

[2] DANIEL GRACIA PEREZ, GILLES MOUCHARD, OLIVIER TEMAM, "A
Fast SystemC Engine", In DATE ’0/4, Paris, France, March 2004.

[3] OLIVIER TEMAM, DANIEL GRACIA PEREZ, GILLES MOUCHARD, Fast-
SysC, MicroLib, hitp://www.microlib.org, 2003-2005.

[4] OLiviEr TEMAM, DANIEL GRACIA PEREZ, GILLES MOUCHARD,
GenISSLib - Instruction Set Simulator Library Generator, MicroLib,
http: / /www.microlib.org, 2004-2005.

[5] DANIEL GRACIA PEREZ, GILLES MOUCHARD, OLIVIER TEMAM, "Mi-

croLib: A Case for the Quantitative Comparison of Micro-Architecture
Mechanisms", In WDDD ‘04, Munich, Germany, June 2004.

[6] DANIEL GRACIA PEREZ, GILLES MOUCHARD, OLIVIER TEMAM, "Mi-
croLib: A Modular Simulation Library", http://www.microlib.org, 2005.

[7] ADRIJEAN ANDRIAHANTENAINA, HERVE CHARLERY, ALAIN GREINER,
LAURENT MORTIEZ, CESAR ALBENES ZEFERINO, "SPIN: a Scalable,
Packet Switched, On-Chip Microfnetwork", In DATE ’08, Munich, Ger-
many, March 2003.

[8] LIP6, "SPIN", http://asim.lip6.fr/ adrijean/, 2004.

[9] M. TayLOR, J. Kim, J. MILLER, D. WENTZLAFF, F. GHODRAT, B.
GREENWALD, H. HOFFMANN, P. JOHNSON, J. LEE, W. LEE, A. Ma,
A. SARAF, M. SENESKI, N. SHNIDMAN, V. STRUMPEN, V. FRANK, S.
AMARASINGHE, A. AGARWAL, "The Raw Microprocessor: A Computa-

tional Fabric for Software Circuits and General-Purpose Programs", In
IEEE Micro, vol 22, Issue 2, 2002.

[10] ANANT AGARWAL, "Raw Computation", In Scientific American, Vol.
281, No. 2, August 1999.

[11] MICHAEL BEDFORD TAYLOR, WALTER LEE, SAMAN AMARASINGHE,
ANANT AGARWAL, "Scalar Operand Networks", In IEEE Transactions
on Parallel and Distributed Systems (Special Issue on On-chip Networks),
February 2005.

[12] LANCE HamMMOND, BEN HUBBERT, MICHAEL Siu, MANOHAR
PrAaBHU, MIKE CHEN, KUNLE OLUKOTUN, "The Stanford Hydra
CMP", In IEEE MICRO Magazine, March-April 2000.

68

[13] MANISH VACHHARAJANI, NEIL VACHHARAJANI, DAVID A. PENRY,
JAsON BLoME, DaAvID I. AuGgusT, "The Liberty Simulation Environ-
ment, Version 1.0", In Performance Evaluation Review: Special Issue on
Tools for Architecture Research, Volume 31, Number 4, March 2004.

[14] Douc BURGER, TopD AUSTIN, "The SimpleScalar Tool Set, Version
2.0", In Technical Report CS-TR-1997-1342, Department of Computer
Sciences, University of Wisconsin, June 1997.

[15] GILLES MOUCHARD, "PowerPC G3 simulator",
http:/ /www.microlib.org/G3/PowerPC750.php, 2002.

[16] MANISH VACHHARAJANI, NEIL VACHHARAJANI, DAVID A. PENRY,
JAsoN A. BLoMmE, DavID I. AuGgusT, "Microarchitectural exploration
with Liberty", In Proceedings of the 35th International Symposium on
Microarchitecture (MICRO), Istanbul, Turkey, November 2002.

[17] IBM, "PPC405Fx Embedded Processor Core
User’s Manual - Preliminary", http:/ /www-
306.1bm.com /chips/techlib/techlib.nsf/products/PowerPC 405 Embedded_Cores,
2005.

[18] IBM, "PowerPC 405 CPU Core White Paper", http://www-
306.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_ 405 Embedded_ Cores,
2005.

[19] GCC, "GNU Compiler Collection", http://gcc.gnu.org, 1987-2005.
[20] DAN KEGEL, "Crosstool", http://kegel.com /crosstool, 2003-2005.

[21] KEVIN KREWELL, "Best Servers of 2004", In Microprocessor Report,
http:/ /www.mpronline.com, Jan 2005.

[22] OriviER TEMAM, DANIEL GRACIA PEREZ, GILLES MOUCHARD,
"OoOSysC", MicroLib, hittp://microlib.org/projects/ooosysc/, 2004-
2005.

[23] OLIVIER TEMAM, DANIEL GRACIA PEREZ, GILLES MOUCHARD, "Al-
phalSS", MicroLib, hitp://microlib.org/projects/alphaiss/, 2004-2005.

[24] INTEL, "Intel Itanium 2 Processor",
http://www.intel.com /business/bss/products/server/itanium?2/, 2005.

[25] PAUL OTELLINI, "Intel Developer Forum", In Intel Keynote Transcript,
http:/ /www.intel.com/pressroom/archive/speeches/otellini20040907.htm,
Fall 2004.

[26] KEVIN KREWELL, "Cell Moves Into the Limelight", In Microprocessor
Report, hitp://www.mpronline.com, Feb 2005.

69

[27] INTEL, "Intel Researchers Build World’s Fastest
Silicon Transistors", In Intel Press Release,
http://www.intel.com /pressroom/archive/releases/20010611tech.htm,
June 2001.

[28] LacAa BENINI, GIOVANNI DE MICHELI, "Networks on Chip: A New
Paradigm for Systems on Chip in Design", In DATE ’02, March 2002.

[29] PIERRE GUERRIER, ALAIN GREINER, "A Generic Architecture for On-
Chip Packet-Switched Interconnections", In DATE ’00 Proceedings, pp.
250-256, March 2000.

[30] XILINX, http://www.zilinz.com.
[31] IBM, http://www.ibm.com.

[32] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS,
http://public.itrs.net.

[33] YANNIS SMARAGDAKIS, DON BATORY, "Mixin-Based Programming
in C++", In Second International Symposium on Generative and
Component-Based Software Engineering (GCSE’2000), Erfurt, Germanz,
October 9-12, 2000.

[34] ANTOINE JALABERT, SRINIVASAN MURALI, LUCA BENINI, GIOVANNI
DE MicHELI, "xpipesCompiler: A Tool for Instantiating Application
Specific Networks on Chip", In DATE ’04, vol. 02, no. 2, p. 20884, Design,
2004.

[35] PAUL WILLMANN, MICHAEL BROGIOLI, VIJAY S. PAI, "Spinach: A
Liberty-based Simulator for Programmable Network Interface Architec-
tures", In ACM SIGPLAN Notices, Volume 39, Issue 7, July 2004.

[36] RAKESH KUMAR, VICTOR ZYUBAN, DEAN M. TULLSEN, "Intercon-
nections in Multi-core Architectures: Understanding Mechanisms, Over-
heads and Scaling", In ISCA 2005, Madison, Wisconsin, USA, June 2005.

[37] THE ALCHEMY RESEARCH GROUP,
http:/ /www.inria.fr/recherche/equipes_ ur/alchemy.fr.html.

[38] THE LIBERTY RESEARCH GROUP, hitp://liberty.cs.princeton. edu.

[39] SIMPLESCALAR LLC, "SimpleScalar Overview",
http: / /www.simplescalar.com/overview.html.

[40] ALLISON HoLLOWAY, MATTHEW ALLEN, "Ex-
ploring Core Designs for Chip Multiprocessors",
http://www.cs.wisc.edu/ david/courses/cs838/projects/ahollowa.pdyf.

70

[41] KEVIN KREWELL, "IBM’s Power4 Unveiling Continues", In Micropro-
cessor Report, hitp://www.mpronline.com, Nov 2003.

[42] D. PHAM, S. AsANO, M. BOLLIGER, M. N. DAy, H. P. HOFSTEE, C.
JOHNS, J. KAHLE, A. KAMEYAMA, J. KEATY, Y. MASUBUCHI, M. RI-
LEY, D. SHIPPY, D. STASIAK, M. SUZUOKI, M. WANG, J. WARNOCK,
S. WEITZEL, D. WENDEL, T. YAMAZAKI, K. YAZAWA, "The Design
and Implementation of a First-Generation CELL Processor", In ISSCC
2005, Seccion 10, Microprocessors and signal processing, 10.2, 2005.

[43] H. PETER HOFSTEE, "Power Efficient Processor Architecture and The
Cell Processor", In Proceedings of the 11th Int’l Symposium on High-
Performance Computer Architecture (HPCA-11), 1530-0897/05, 2005.

[44] IBM, "The CELL project at IBM Research",
http:/ /www.research.ibm.com/cell/, 2001-2005.

[45] GILLES MOUCHARD, "Modelisation de Processeurs et de Systemes",
PhD Thesis, Universite Paris XI Orsay, In French, 2004.

[46] OLIVIER TEMAM, PIERRE PALATIN, DANIEL GRACIA PEREZ,
GILLES MOUCHARD, "Generic Cache Library", MicroLib,
http://www.microlib.org/genericcaches/, 2004-2005.

71

