
Complete SE3 Underwater Robot Control
with Arbitrary Thruster Configurations

Marek Doniec, Iuliu Vasilescu, Carrick Detweiler, Daniela Rus
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts

{doniec, iuliuv, carrick, rus}@csail.mit.edu

Abstract— We present a control algorithm for autonomous
underwater robots with modular thruster configuration. The
algorithm can handle arbitrary thruster configurations. It
maintains the robot’s desired attitude while solving for trans-
lational motion. The attitude can be arbitrarily chosen from
the special orthogonal group SO3 allowing the robot all
possible orientations. The desired translational velocities can
be chosen from R3 allowing the robot to follow arbitrary
trajectories underwater. If the robot is not fully holonomic then
the controller chooses the closest possible solution using least
squares and outputs the error vector.

We verify the controller with experiments using our au-
tonomous underwater robot AMOUR. We achieve roll errors
of 1.0 degree (2.1 degrees standard deviation) and pitch errors
of 1.5 degrees (1.8 degrees standard deviation). We also demon-
strate experimentally that the controller can handle both non-
holonomic and fully holonomic thruster configurations of the
robot. In the later case we show how depth can be maintained
while performing 360 degree rolls. Further, we demonstrate an
input device that allows a user to control the robot’s attitude
while moving along a desired trajectory.

I. INTRODUCTION

We have developed a small, highly maneuverable, under-
water autonomous vehicle called AMOUR [1]. AMOUR is
designed to be a flexible underwater platform that can operate
in shallow ocean environments. The robot’s tasks include
deploying static sensor nodes, taking pictures and videos of
coral reefs for environmental monitoring, performing visual
and acoustic ship-hull inspection, and docking with other
underwater vehicles.

This wide range of tasks requires a modular robot whose
thrusters can be easily repositioned, added, or removed from
the system to ensure the system can deliver and position
the payload with the precision required by the task. For
example, adding an underwater imaging system, such as
the one described in [2], significantly changes the system
dynamics and the thrusters have to compensate. Using the
robot to collect and deploy sensor nodes [3] also requires a
robot configuration and control system that is very adaptive.
Other tasks, such as optical data muling from deployed
sensors [4] require a stable controller with high positioning
precision.

The prior version of our robot required a different con-
troller for each of these tasks [1]. The controller had a
separate proportional-integral-derivative (PID) control loop

Fig. 1. The robot assembly with 10 thrusters and the human input device
(cylindrical object in the front). Five thrusters are attached in the same
configuration as in Figure 2 and a sixth thruster is attached to the front
of the robot to make it fully holonomic. The other four thrusters are for
replacement. The left side of the robot contains the IMU and the controllers.
The battery is visible in the middle (red). The right side contains the power
electronics. Below the top thruster and at the bottom of the robot the external
ballast is visible that is necessary to weight down the robot. The robot is
over 3kg buoyant without any payload attached.

for each of the pitch, roll, and yaw angles of the robot. This
controller requires a knowledge of the contribution of each
thruster or control surface to the pitch, yaw, and roll of the
robot. However, we found it difficult to add, remove or move
thrusters as the mission requirements changed. Additionally,
using the typical approach of Euler angle rotation matrices
yields controllers which are only locally stable and are
subject to gimbal lock. For these reasons we wish to develop
a new controller that can adapt to different numbers and
orientations of the thrusters.

In this paper we describe a new Modular Thruster Control
Algorithm that supports an arbitrary number of thrusters
and thruster configurations and can effect arbitrary orien-
tations on a robot with a modular thruster system. The
orientation of the robot can be arbitrarily set and changed
while maintaining independent control of the translational
components (e.g. the robot can be rolling head-over-heels
while maintaining depth). More specifically, the attitude can
be arbitrarily chosen from the special orthogonal group SO3

(rotation group for three-dimensional space) while choosing
the translational velocities from R3.



We also describe a human input device that allows for very
natural control of an underwater robot. The input device is
held in the user’s hand. The orientation of the robot follows
that of the input device. The human can use the device to
guide the robot’s direction and orientation. For example, to
survey a coral-head with the camera pointed at the coral, the
user aims the input device to keep the nose/camera of the
robot pointed at an area of interest. As the robot moves, the
user sets its desired orientation and the controller effects the
direction of travel along the desired vector.

This paper is organized as follows. We start with a survey
of the related work. We then present the algorithm for
modular thruster control. We discuss the implementation
of the algorithm on the AMOUR underwater vehicle and
present the results of experiments demonstrating the stability
of our controller in many different orientations. Finally, we
show that the controller supports the addition of another
thruster to the robot.

II. RELATED WORK

Most underwater vehicles are torpedo shaped with only
one or two thrusters. Traditional pitch/roll/yaw controllers
work well on these types of configurations. Our robot,
AMOUR, is a high degree of freedom robot [1] that can
accommodate up to 8 thrusters. Other robots in this class of
robots include the University of Hawaii ODIN-III robot [5],
the CSIRO Starbug robot [6] and the Bluefin Robotics
HAUV [7].

The controller described in this paper is most closely
related to work by Hanai et al. [8]. They propose a similar
geometric solution to robot control. The desired translational
and rotational forces are used to determine the force for each
thruster using a least squares method. This work assumes
known thruster parameters and requires that the thrust vs.
voltage curve to compute desired output values is known.
Further, the controller does not have a derivative component
leading to large oscillations and often needs more than 20
seconds to settle. Our system does not assume calibrated
thrusters and adds derivative control to produce stable control
loops.

Ghabcheloo et al. uses a similar vehicle orientation model
to steer a group of robots to maintain formation. This work
is done in simulation and does not address individual robots
or thrusters [9]. Oh et al. describes how to compute paths
for homing and docking using a similar vehicle orientation
representation [10].

Fossen et al. present a survey of methods for control
allocation of overactuated marine vessels [11]. The systems
are not underactuated and this work focuses on the two
dimensional case where depth, pitch, and roll are not con-
sidered. However the model could be extended to the three
dimensional case.

Lee et al. uses Euler angles to create a 6-DOF controller
for a simulated underwater vehicle. A genetic algorithm tunes
the controllers [12]. This controller is subject to gimbal lock,
however, their approach to tuning the individual controllers
may be advantageous. Zhao et al. proposes an adaptive

Fig. 2. AMOUR’s standard configuration with 5 thrusters. The thrusters
can be arbitrarily mounted along the body. The body measures 17.8cm in
diameter and 72.4cm in length. The thruster measure 4.8cm in diameter and
25.4cm in length. They drive a 9.4cm diameter and 9.6cm pitch propeller
which is housed in a 10.1cm diameter nozzle.

controller which does not require tuning by a human [13].
They emphasize the importance of being able to maintain a
stable controller even when vehicle dynamics change.

III. MODULAR THRUSTER CONTROL
ALGORITHM

This section describes the Modular Thruster Control Al-
gorithm. We first state the assumptions, the necessary input
data, and what is provided as output. Then we give a high
level explanation of how we achieve complete control in the
special euclidean group SE3 (group of all translations and
rotations in three-dimensional space). Finally, we present the
details of the Modular Thruster Control Algorithm.

A. Assumptions, input, and output

We assume that the robot knows the position and ori-
entation of the thruster’s and that the robot is capable of
determining its own attitude. In particular, the algorithm
presented takes as input a measured acceleration vector,
a ∈ R3, and a measured magnetic field vector, m ∈ R3. We
assume that the acceleration vector is pointing towards the
ground and that the magnetic field vector is pointing north
and upwards. Further, we assume the robot has a pressure
sensor to measure the robot’s depth, dis ∈ R. At sea level
depth is assumed to be 0 meters and as the robot dives the
value dis decreases.

The control algorithm presented in this paper takes the
current and desired robot attitude and depth as input and
outputs speed commands for each thruster. The current state
of the robot is computed from IMU measurements.

The goal attitude is provided as a rotation matrix and the
goal depth is provided as a scalar:

Rgoal ∈ SO3, dgoal ∈ R. (1)

The algorithm is configured by providing a list of thruster
positions, pi ∈ R3, and orientations, oi ∈ R3, in the
robot coordinate frame for the N thrusters. Further, the



proportional, integral, and derivative constants for the PID
controller need to be provided. Adding or removing thrusters
is as simple as updating the position and orientation vectors
and specifying the PID loop.

The center of mass is assumed to be at the origin of
the robot coordinate system in this paper. However, the
algorithm can easily be extended to incorporate a moving
center of mass by simply subtracting the center of mass at
the appropriate places.

The output of the main stage of the algorithm (the parts
described in detail in this section) is an error for each thruster
that is derived from the robot’s rotational error and an error
for each thruster that is derived from the robot’s translational
error.

B. Overview

The Modular Thruster Control Algorithm computes the
rotational error in radians between the robot’s current pose
and desired pose. It also computes the axis around which
this rotation should occur. Using a unit torque representation
for all thrusters we solve for individual thruster errors that
when summed will result in the total current rotational error.

Next, we compute the translational error given the thruster
outputs using depth and position.1 Using unit direction
vectors for each thruster we solve for individual thruster
errors that when multiplied with each thruster’s direction will
result in the total translational error.

The computed rotational and translational errors are each
used as input to a separate PID controller on each thruster.
Thus we can tune a thruster’s response to translational and
rotation errors independently. Finally, the output of both
PID controllers is summed for each thruster to generate the
thruster output.

To visualize why a separate rotational and translational
PID controller is necessary for every thruster, consider the
robot assembly shown in Figure 2. We remove the top and
two bottom thrusters leaving only the left and right thruster
and then try to roll the robot along its axis. We will encounter
very little resistance as essentially no displacement of water
occurs as the robot’s body rolls. Thus we will only require
a small P-gain for rotation control of the left and right
thrusters. However, if we try to change depth with this two
thruster configuration then we have to move the entire robot
body broadside through the water. This will create a lot of
drag and will require a far higher P-gain for the translational
control of the two thrusters.

While we do not directly consider robot dynamics the use
of two separate PID controllers for each thruster allows for a
good approximation of simple robot dynamics. For example,
in the above case we can tune the PID controllers derivative
parameter to account for the momentum that occurs when
the robot turns to prevent overshoot.

Our method is related to, but differs from Hanai et al. [8]
in that they directly compute the required thrust necessary

1In the experiments presented in this paper we did not have robot XY-
position and so computed our translational error only based on depth.

to be produced by each thruster. Hanai et al. assume that
the voltage-to-thrust curve is known and drive each thruster
directly from this curve. However, such a curve is static and
will not accommodate changes in the vehicle’s dynamics.
Our method allows the user to quickly adjust the controller
to such changes.

C. Computing the current robot state

Using the data provided by the IMU we first compute the
robot’s attitude by computing the east, north, and up vectors
in its frame of reference and then generate the respective
rotation matrix:

e = a×m, n = e× a
Ris = [ê, n̂,−â] (2)

D. Computing the attitude error

Next we compute the rotation that will take the robot from
its current attitude to the goal attitude (Ris ⇀ Rgoal). This
rotation has to be represented in the robot’s local coordinate
frame. It turns out that the command will be:

Rcmd = (R−1
goal ·Ris)

−1 (3)

We then convert this into a desired rotation angle and axis:

ω = arccos((Trace(Rcmd − 1)/2) (4)

r =
1

2 · sin(ω)
·

 Rcmd,32 −Rcmd,23

Rcmd,13 −Rcmd,31

Rcmd,21 −Rcmd,12

 (5)

where Rcmd,xy represents entry (x, y) of Rcmd.
Next we compute the depth error in meters and the

torque error vector. The direction of the torque error vector
represents the torque axis of the error, while the length gives
the amplitude of the error in radians:

erobot,depth = dgoal − dis (6)
erobot,rot = ω · r (7)

E. Computing separate thruster errors for rotation

To solve for rotation we compute the torque vector for
every thruster:

ti = pi × oi, i ∈ 1 . . . N. (8)

We then concatenate all torque vectors to form an equation
system. Extra user constraints, like the definition of thruster
symmetries, can be added as extra lines Crot to the equation
system:

Arot =

[
t1 . . . tN

Crot

]
(9)

To finally compute the error for every thruster we use
linear least squares approximation. The advantage of this
method is that if a perfect solution does not exist, for instance
if the robot does not have enough degrees of freedom (DOF),



then we get the best possible solution. To compute the result
we first compute the Moore-Penrose pseudoinverse:

A+
rot = AT

rot · (Arot ·AT
rot)

−1 (10)

and use it to solve for thruster errors. Because we added
constrains Crot to Arot we need to pad erobot,rot with zeros
equal to the number of rows in Crot:

Ethrusters,rot = A+
rot ·


erobot,rot

0
...
0

 . (11)

Note that because of thruster redundancy it is likely that
infinitely many solutions exist. Adding constraints to Arot

are one way of choosing the right solution. Alternatively,
as in [8] a specific solution can be chosen (for example
to minimize the thruster output while avoiding thruster
dead bands). We have chosen the constraint adding solution
because in our experiences thruster dead bands did not affect
the performance of our robot.

F. Computing separate thruster errors for translation

We only use the depth error erobot,depth to computer the
translational error erobot,trans. However, provided position
information for the robot an error in the XY plane can be
computed and added to erobot,trans.

erobot,trans = [0 0 erobot,depth]
T (12)

Using the concatenation idea that allowed us to create a
system of equations from the torque vectors to solve for
rotation, we can also concatenate all unit orientation vectors:

Atrans =

[
o1 . . . oN

Ctrans

]
(13)

Again we use least square approximation to solve for
thruster errors and remember to pad erobot,trans with zeros
equal to the number of rows in Ctrans:

A+
trans = AT

trans · (Atrans ·AT
trans)

−1 (14)

Ethrusters,trans = A+
trans ·


erobot,trans

0
...
0

 . (15)

G. Final steps

We described how we can compute a rotational and a
translational error for every thruster. Each of these errors
is used as input to a PID controller and the output of these
controllers is added to produce a thruster output.

It is worth mentioning that thruster failures can be handled
by removing the appropriate line from Arot and Atrans.
Failure can be detected in several ways, for example the
thruster not responding to communication requests. We also

Algorithm 1 Modular Thruster Control Algorithm

A+
rot = AT

rot · (Arot ·AT
rot)

−1

A+
trans = AT

trans · (Atrans ·AT
trans)

−1

loop
Ris = [ê, n̂,−â]
Rcmd = (R−1

goal ·Ris)
−1

r = axis(Rcmd), w = angle(Rcmd)
Ethr.,rot = A+

rot · [ω · rT 0 . . . 0]T

Ethr.,trans = A+
trans · [0 0 (dgoal − dis) 0 . . . 0]T

end loop

Fig. 3. AMOUR’s user interface. The UI can run on a laptop connected
to the robot through a serial cable. The UI provides visual feedback and
allows for easy on-the-fly tuning of parameters.

envision a system that actively can detect changes in thruster
response by using a disturbance observer (DOB) similar
to [13].

Further note that unless the number or position of thrusters
changes (or if the constraints change) then Arot and Atrans

are constant and do not need to be computed during every
update step.

A summary of the Modular Thruster Control Algorithm is
given above in Algorithm 1.

IV. HARDWARE

A. AMOUR 6

We implemented the Modular Thruster Control Algorithm
on the sixth iteration of AMOUR (Autonomous Modular
Optical Underwater Robot), our in-house developed AUV.
The previous versions of AMOUR were presented in [1],
[2], [14]. The main improvement in the current version is
increased modularity.

AMOUR is composed of a main body and up to 8 external
thrusters. Without payload and equipped with 5 thrusters the
robot weights approximately 17.5kg and is 3kg buoyant.

The body is an acrylic cylinder, measuring 17.8cm in
diameter and 72.4cm in length. The body houses a Lithium-
Ion battery, battery management board, inertial measurement
unit (IMU), sensor board [3], communication hub for serial
devices, and a small PC [15]. The battery has a capacity of
645Wh and amounts for a third of the weight of the robot.
The battery is actuated by an electric motor and it can travel
along the axis of the robot to shift the robot’s center of
mass [1]. At each end, the body has a two 10cm empty
section that can be used for additional dry payloads. The
battery management board distributes the power, measures



−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−30

−25

−20

−15

−10

−5

0

5

10

time [s]

re
la

ti
v
e
 a

n
g
le

 [
d
e
g
]

1.5 1.4 1.3 1.2 1.1 1.2 0.9 0.7 0.9 1.1 1.3 1.4 1.5 1.5 1.6 1.6 1.6 1.7 1.8

(a) Pitch forward step response.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−10

−5

0

5

10

15

20

25

30

time [s]

re
la

ti
v
e
 a

n
g
le

 [
d
e
g
]

1.8 1.6 1.5 1.5 1.1 0.9 0.9 1.0 1.2 1.4 1.6 1.8 1.9 1.9 1.8 1.6 1.5 1.5 1.3

(b) Pitch backward step response.

−0.5 0 0.5 1 1.5 2 2.5
−30

−25

−20

−15

−10

−5

0

5

10

time [s]

re
la

ti
v
e
 a

n
g
le

 [
d
e
g
]

1.6 1.7 1.7 1.9 1.8 1.9 2.0 2.1 2.1 2.0 1.8 1.8 1.8 1.8

(c) Roll counter-clockwise step response.

−0.5 0 0.5 1 1.5 2 2.5
−5

0

5

10

15

20

25

30

time [s]

re
la

ti
v
e
 a

n
g
le

 [
d
e
g
]

1.9 2.0 2.0 2.1 2.1 2.1 2.2 2.2 2.2 2.0 2.1 2.0 2.0 2.1

(d) Roll clockwise step response.

Fig. 4. Experimental results for pitch and roll step response. The robot was commanded to performed 48 discrete 22.5 degree turns (three full rotations)
around both the pitch and roll axes. The black lines represent the step command and the red lines represent AMOUR’s response. In the pitch direction
the robot settles within 1.5 degrees (1.8 degree standard deviation) of the commanded angle in an average of 1.9 seconds. In the roll direction the robot
settles within 1 degree (2.0 degree standard deviation) of the commanded angle in an average of 1.4 seconds.

the robot’s current consumption and tracks the precise state
of the battery using a charge counter. The IMU estimates the
pose and the depth of the robot by fusing the raw data from
10 sensors (one pressure sensor, 3 magnetic field sensors,
3 accelerometers and 3 gyroscopes). The sensor board is
used for (1) reading of GPS and marine analog and digital
sensors, (2) data logging and (3) radio communications.
The communication hub allows the connection of up to 16
devices (serial TLL, RS232 or RS485). The PC will be used
in the future for control, high level mission planning, and
online data processing of the sensory payload.

The thrusters are designed in house. Each thruster is
composed of a motor controller and a 600W geared brushless
DC motor driving a Kort nozzle propeller with a diameter
of 9.4cm. The motor and the electronics are housed in an
aluminum cylinder, with a diameter of 4.8cm and a length
of 25.4cm. Each thruster can generate up to 4kg of static
thrust. The thrusters receive commands via a RS485 bus.

AMOUR’s configuration is very modular. The thrusters
can be attached along the robot’s body or to the robot’s
end caps. Each thruster is connected electrically to one of
the 8 ports fitted on AMOUR’s bottom cap. Replacing a
thruster or changing the thruster configuration can be done

in less than 5 minutes. AMOUR is designed to carry internal
and external payloads. AMOUR’s control algorithms and
high power thrusters allow precise and fast manipulation of
payloads of size similar to its own.

For the purpose of this paper, the robot was connected to a
laptop computer on which we ran the control algorithm and
the user interface shown in Figure 3. We used a full duplex
RS232 link to relay the IMU pose estimation from the robot
to the laptop and the thruster commands from the laptop
to the robot. In the future we will implement the control
algorithm on the IMU’s processor.

B. Human Input Device

We built a miniature model of AMOUR fitted with an
IMU, to be used as a human input device (Figure 1). The
operator can use this device to command the robot’s pose
quickly and intuitively. When in use, the IMU inside the
model reports its orientation, which can be transmitted to
AMOUR’s controller at a rate of 200Hz. We used this device
to evaluate the robot’s response to complex motions. In the
future we envision researchers using this device to remote
control the robot for video shooting, manipulation, and data
gathering.



V. EXPERIMENTS
We evaluated the performance of the Modular Thruster

Control Algorithm during a set of trials performed at the
MIT Alumni swimming pool. The pool depth varies between
2 and 3 meters. We typically operated the robot at a depth of
1 meter. For the first set of experiments the robot was fitted
with 5 thrusters as shown in Figure 2. At one point during the
experiment one thruster failed. We were able to replace the
thruster and resume operations in under five minutes. In the
second set of experiments we added a sixth thruster as shown
in Figure 1. We trimmed the buoyancy and the balance of the
robot by adding stainless steel washers to 4 rods distributed
around the robot’s body. After trimming the robot was 50g
negatively buoyant and almost neutrally balanced.

We then tuned the translation and rotation PID controllers
for each of the five thrusters. As described in Section III, we
need two different controllers for the translation and rotation
to account for the fact that, for example, in the roll case there
is very little drag, however, there is a lot of drag during depth
translation.

We were able to take advantage of the symmetries of the
robot to reduce the actual number of PID loops that we
needed to tune to four (the two vertical and three horizontal
thrusters have the same parameters). First, we stabilized
the rotational controllers and then we tuned the translation
controller. In our setup we did not have an XY-positioning
system, so our translation controller just dealt with depth
control. When we added a sixth thruster we were able to
keep all of the parameters for the other thrusters the same
and just tuned the parameters for the new thruster.

Our general approach to tuning the PID controllers was to
increase the proportional term until they responded quickly
and had small overshoots and oscillations. Then we added
a derivative component to dampen the oscillations. Finally,
an integral component can be added to compensate for any
constant offsets, however, we did not find this necessary in
these trials as the robot was well balanced. Tuning all of the
parameters in this experiment took under 15 minutes and
only needed to be done once.

Retuning individual thruster PID controllers is not neces-
sary unless the position of the thrusters changes significantly,
which never occured during our experiments. In our experi-
ence rotating the thruster by as much as 10 degrees did not
visibly affect controller performance. It should also be noted
that the thrusters were attached by hand and their positions
were only estimated as opposed to measured. This shows the
robustness of our controller to inaccuracies.

A. Experimental Results

We performed a number of experiments to validate the
control algorithm. In the first experiment we examined the
step response of the controller to changes in orientation. The
robot was configured with five thrusters. For both clockwise
and counterclockwise pitch and roll we commanded 48 dis-
crete 22.5 degree turns (three full turns). The results of these
experiments are shown in Figure 4. In the pitch direction
the robot settles within 1.5 degrees of the commanded angle

in an average of 1.9 seconds. In the roll direction the robot
settles to within 1 degree in an average of 1.4 seconds. While
we do not have room to report on the yaw controller, other
experiments using the yaw controller yield similar results.

The change in the commanded angle is illustrated by the
black square signal in the figure. Note that there is a 160
millisecond delay from the command changing to the robot
responding. We suspect that this delay is caused by our user
interface. The pitch controller initially overshoots but then
quickly settles to the target angle. The roll controller does not
overshoot. Impulses given to the robot by a human swimmer
resulted in similar quick settling times.

Figure 5(a) shows the depth of the robot as the robot rolled
with five thrusters. In this configuration the robot can only
control five degrees of freedom, the sixth is uncontrolled.
When the robot is on its side it does not have any thrusters
to compensate for the slight negative buoyancy. Thus, the
robot starts to sink in that orientation, as seen in Figure 5(a).
In this situation the controller alerts the user that the desired
command cannot be executed precisely and outputs the type
and magnitude of the error.

To make the robot approximately holonomic we added
a sixth thruster to the nose of the robot in a horizontal
configuration as shown in Figure 1. The robot is then able
to maintain depth when it is rotated on its side. However, in
doing so the bow thruster exerts a torque on the robot that
the control algorithm compensates for by using the other
thrusters. Figure 5(b) shows the depth of the robot as the
robot rolls with six thrusters. This plot shows that we are
able to maintain depth control of the robot even when it is
on its side. In this experiment the robot was controlled using
the human input device, keeping the robot on its side most
of the time where it is most difficult to maintain depth.

The ability of the robot to track the desired trajectory of
the human input device can be seen in the top portion of
Figure 5(b). The black line indicates the target orientation
based on the input device and the red line is the actual
orientation of the robot. Most of the time these lines are
completely overlapping indicating that the robot achieves the
desired orientation. The video attached to this paper shows
the use of the input device. Multiple users operated the robot
in the pool environment with the input device. All users
reported that robot could be easily and intuitively controlled.
Complex rolls and orientations can easily be achieved due
to the high update rate of the input device and the quick
response time of the robot.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we described the Modular Thruster Control
Algorithm for autonomous underwater robots with modular
thruster configuration. This algorithm can orient a robot in
any configuration in SE3. We describe how the control
algorithm maps a desired change in robot state to individual
thruster outputs. The algorithm accommodates the addition,
removal, and arbitrary positioning of thrusters.



0 50 100 150 200 250
−180

−90

0

90

180

Robot Roll

time [s]

a
n
g
le

 [
d
e
g
]

0 50 100 150 200 250
−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

Robot Depth

time [s]

d
e
p
th

 [
m

]

(a) Depth control at various roll angles, using 5 thrusters.

0 20 40 60 80 100 120
−180

−90

0

90

180

Robot Roll

time [s]

a
n
g
le

 [
d
e
g
]

0 20 40 60 80 100 120
−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

Robot Depth

time [s]

d
e
p
th

 [
m

]

(b) Depth control at various roll angles, using 6 thrusters.

Fig. 5. This graph shows the performance of the control algorithm in two configurations: (a) 5 thrusters and (b) 6 thrusters. The top graphs show the roll
angle and the bottom graphs show the depth. The black lines plot the roll and depth commands and the red lines plot the actual roll and depth. When using
5 thrusters, the robot is not fully holonomic and cannot control depth when rolled 90 degrees. At this angle the robot sinks due to its negative buoyancy.
When a sixth thruster is attached the robot become approximately holonomic. In this configuration the robot can control its depth in any orientation.

We show experimentally that our robot quickly achieves
the target configurations with little or no oscillations. We
are able to maintain accurate depth control even when
performing barrel or head-over-heels rolls. Making use of
this control algorithm on our robot gives us a robust and
stable platform that can be reconfigured for a variety of tasks
including deploying sensor nodes, taking pictures and videos,
harbor and port security, and docking with other vehicles.

We also presented a human input device which enables
quick and intuitive control of an underwater vehicle. This
input device allows a user to arbitrarily orient the robot even
while it is moving along a motion vector.

B. Future Work
We plan to extend our control algorithm to accommodate

the docking of multiple robots together to form one larger
robot. By simply sharing thruster position information we
should be able to control the new, larger, vehicle using the
same algorithm.

One limitation of our algorithm is that it still requires
parameter tuning for the PID values. While this is relatively
quick to perform, we also plan to explore algorithms to
automatically tune these parameters. Taking this a step
further, we hope to learn the position and parameters for
new thrusters which are added to the robot or automatically
compensate for a failed thruster. We plan to allow for both
self-tuning of the thrusters as well as adaptive tuning in case
the position or parameters for a thruster change unexpectedly
during operation.

Finally, we plan to extend the functionality of our human
input device to allow for translational motion control.

VII. ACKNOWLEDGMENTS
We are grateful to DSTA Singapore and Intel for support-

ing in part this research.

REFERENCES

[1] I. Vasilescu, C. Detweiler, M. Doniec, D. Gurdan, S. Sosnowski,
J. Stumpf, and D. Rus, “Amour v: A hovering energy efficient
underwater robot capable of dynamic payloads,” International Journal
of Robotics Research (IJRR), 2010.

[2] I. Vasilescu, “Using light underwater: Devices, algorithms and
systems for maritime persistent surveillance,” Ph.D. dissertation,
MIT, February 2009. [Online]. Available: http://iuliu.com/pub/iuliu-
vasilescu-phd-eecs-2009.pdf

[3] C. Detweiler, I. Vasilescu, and D. Rus, “An underwater sensor network
with dual communications, sensing, and mobility,” OCEANS 2007 -
Europe, pp. 1–6, June 2007.

[4] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus, “Data muling over
underwater wireless sensor networks using an autonomous underwater
vehicle,” in Proc. IEEE ICRA 2006, Orlando, Florida, May 2006, pp.
2091–2098.

[5] H. Choi, A. Hanai, S. Choi, and J. Yuh, “Development of an un-
derwater robot, ODIN-III,” in Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference
on, vol. 1, 2003, pp. 836–841 vol.1.

[6] M. Dunbabin, J. Roberts, K. Usher, G. Winstanley, and P. Corke, “A
hybrid AUV design for shallow water reef navigation,” in Robotics
and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, 2005, pp. 2105–2110.

[7] J. Vaganay, M. Elkins, D. Esposito, W. O’Halloran, F. Hover, and
M. Kokko, “Ship hull inspection with the HAUV: US navy and NATO
demonstrations results,” in OCEANS 2006, 2006, pp. 1–6.

[8] A. Hanai, H. T. Choi, S. K. Choi, and J. Yuh, “Experimental study
on fine motion control of underwater robots,” Advanced robotics: the
international journal of the Robotics Society of Japan, vol. 18, no. 10,
pp. 963–978, 2004.

[9] R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer,
and J. Hespanha, “Coordinated path-following in the presence of
communication losses and time delays,” SIAM - Journal on Control
and Optimization, vol. 48, no. 1, pp. 234–265, 2009.

[10] K. Oh, J. Kim, I. Park, J. Lee, and J. Oh, “A study on the control of
AUV’s homing and docking,” in 9th IEEE Conference on Mechatrinics
and Machine Vision in Practice, ser. 9, Thailand, 2002, pp. 45–52.

[11] T. Fossen and T. Johansen, “A survey of control allocation methods
for ships and underwater vehicles,” in Proceedings of the 14th IEEE
Mediterranean Conference on Control and Automation, Ancona, Italy,
June 2006.

[12] J. Lee, M. Roh, J. Lee, and D. Lee, “Clonal selection algorithms for
6-DOF PID control of autonomous underwater vehicles,” in Artificial
Immune Systems, 2007, pp. 182–190.

[13] S. Zhao, J. Yuh, and H. Choi, “Adaptive DOB control of underwater
robotic vehicles,” in OCEANS, 2001. MTS/IEEE Conference and
Exhibition, vol. 1, 2001, pp. 397–402 vol.1.

[14] I. Vasilescu, P. Varhavskaya, K. Kotay, and D. Rus, “Autonomous
modular optical underwater robot (amour) design, prototype and
feasibility study,” in Proc. IEEE ICRA 2005), Barcelona, Spain, 2005,
pp. 1603–1609.

[15] CompuLab. (2009) fit-pc2 wiki. [Online]. Available: http://fit-pc2.com/


